Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Organic nitrate (RONO2) formation in the atmosphere represents a sink of NOx(NOx = NO + NO2) and termination of the NOx/HOx(HOx = HO2 + OH) ozone formation and radical propagation cycles, can act as a NOx reservoirtransporting reactive nitrogen, and contributes to secondary organic aerosol formation. While some fraction of RONO2 is thought to reside in the particle phase, particle-phase organic nitrates (pRONO2) are infrequently measured and thus poorly understood. There is anincreasing prevalence of aerosol mass spectrometer (AMS) instruments, which have shown promise for determining the quantitative total organic nitratefunctional group contribution to aerosols. A simple approach that relies on the relative intensities of NO+ and NO2+ ions inthe AMS spectrum, the calibrated NOx+ ratio for NH4NO3, and the inferred ratio for pRONO2 hasbeen proposed as a way to apportion the total nitrate signal to NH4NO3 and pRONO2. This method is increasingly beingapplied to field and laboratory data. However, the methods applied have been largely inconsistent and poorly characterized, and, therefore, adetailed evaluation is timely. Here, we compile an extensive survey of NOx+ ratios measured for variouspRONO2 compounds and mixtures from multiple AMS instruments, groups, and laboratory and field measurements. All data and analysispresented here are for use with the standard AMS vaporizer. We show that, in the absence of pRONO2 standards, thepRONO2 NOx+ ratio can be estimated using a ratio referenced to the calibrated NH4NO3 ratio, aso-called “Ratio-of-Ratios” method (RoR = 2.75 ± 0.41). We systematically explore the basis for quantifyingpRONO2 (and NH4NO3) with the RoR method using ground and aircraft field measurements conducted over a largerange of conditions. The method is compared to another AMS method (positive matrix factorization, PMF) and other pRONO2 andrelated (e.g., total gas + particle RONO2) measurements, generally showing good agreement/correlation. A broad survey of ground andaircraft AMS measurements shows a pervasive trend of higher fractional contribution of pRONO2 to total nitrate with lower totalnitrate concentrations, which generally corresponds to shifts from urban-influenced to rural/remote regions. Compared to ground campaigns,observations from all aircraft campaigns showed substantially lower pRONO2 contributions at midranges of total nitrate(0.01–0.1 up to 2–5 µg m−3), suggesting that the balance of effects controlling NH4NO3 and pRONO2formation and lifetimes – such as higher humidity, lower temperatures, greater dilution, different sources, higher particle acidity, andpRONO2 hydrolysis (possibly accelerated by particle acidity) – favors lower pRONO2 contributions for thoseenvironments and altitudes sampled.more » « less
-
Abstract. Gas-phase atmospheric concentrations of peroxyacetyl nitrate (PAN),peroxypropionyl nitrate (PPN), and peroxymethacryloyl nitrate (MPAN) weremeasured on the ground using a gas chromatograph electron capture detector(GC-ECD) during the Southern Oxidants and Aerosols Study (SOAS) 2013 campaign(1 June to 15 July 2013) in Centreville, Alabama, in order to studybiosphere–atmosphere interactions. Average levels of PAN, PPN, and MPAN were169, 5, and 9 pptv, respectively, and the sum accounts for an average of16 % of NOy during the daytime (10:00 to 16:00 localtime). Higher concentrations were seen on average in air that came to thesite from the urban NOx sources to the north. PAN levelswere the lowest observed in ground measurements over the past two decades inthe southeastern US. A multiple regression analysis indicates that biogenicvolatile organic compounds (VOCs) account for 66 % of PAN formationduring this study. Comparison of this value with a 0-D model simulation ofperoxyacetyl radical production indicates that at least 50 % of PANformation is due to isoprene oxidation. MPAN has a statistical correlationwith isoprene hydroxynitrates (IN). Organic aerosol mass increases withgas-phase MPAN and IN concentrations, but the mass of organic nitrates inparticles is largely unrelated to MPAN.more » « less
-
Abstract We present a comparison of instruments measuring nitrogen oxide species from an aircraft during the 2015 Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign over the northeast United States. Instrument techniques compared here include chemiluminescence (CL), thermal dissociation laser‐induced fluorescence (TD‐LIF), cavity ring‐down spectroscopy (CRDS), high‐resolution time of flight, iodide‐adduct chemical ionization mass spectrometry (I‐CIMS), and aerosol mass spectrometry. Species investigated include NO2, NO, total nitrogen oxides (NOy), N2O5, ClNO2, and HNO3. Particulate‐phase nitrate is also included for comparisons of HNO3and NOy. Instruments generally agreed within reported uncertainties, with individual flights sometimes showing much better agreement than the data set taken as a whole, due to flight‐to‐flight slope changes. NO measured by CRDS and CL showed an average relative slope of 1.16 ± 0.01 across all flights, which is outside of combined uncertainties. The source of the error was not identified. For NO2measured by CRDS and TD‐LIF the average was 1.02 ± 0.00; for NOymeasured by CRDS and CL the average was 1.01 ± 0.00; and for N2O5measured by CRDS and I‐CIMS the average was 0.89 ± 0.01. NOybudget closure to within 20% is demonstrated. We observe nonlinearity in NO2and NOycorrelations at concentrations above ~30 ppbv that may be related to the NO discrepancy noted above. For ClNO2there were significant differences between I‐CIMS and TD‐LIF, potentially due in part to the temperature used for thermal dissociation. Although the fraction of particulate nitrate measured by the TD‐LIF is not well characterized, it improves comparisons to include particulate measurements.more » « less
An official website of the United States government
