Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 21, 2025
-
Culturally relevant and sustaining implementations of computing education are increasingly leveraging young learners' passion for sports as a platform for building interest in different STEM (Science, Technology, Engineering, and Math) concepts. Numerous disciplines spanning physics, engineering, data science, and especially AI based computing are not only authentically used in professional sports in today's world, but can also be productively introduced to introduce young learnres to these disciplines and facilitate deep engagement with the same in the context of sports. In this work, we present a curriculum that includes a constellation of proprietary apps and tools we show student athletes learning sports like basketball and soccer that use AI methods like pose detection and IMU-based gesture detection to track activity and provide feedback. We also share Scratch extensions which enable rich access to sports related pose, object, and gesture detection algorithms that youth can then tinker around with and develop their own sports drill applications. We present early findings from pilot implementations of portions of these tools and curricula, which also fostered discussion relating to the failings, risks, and social harms associated with many of these different AI methods – noticeable in professional sports contexts, and relevant to youths' lives as active users of AI technologies as well as potential future creators of the same.more » « less
-
This experience report describes two years of work integrating coding with Micro:bits and Makecode into a Hawaiian immersion bilingual school setting to teach computer science (CS) skills in a place-based approach. This report highlights the collaborative partnerships and programs between a public Hawaiian immersion school, a non-profit organization that manages important cultural sites, and a university lab that develops sustainable technology. Students identified the importance of sustainability in computing by engaging with past, present, and future technologies in culturally relevant contexts. We describe ongoing work to improve the way we support students and teachers in a Hawaiian-immersion bilingual school setting.more » « less
-
Around the world, many K-12 school systems are seeking ways to provide youth with computer science (CS) learning experiences. Often organizations aim to develop these opportunities by building capacity among science, technology, engineering, and mathematics teachers. In other instances, school may engage with language arts, history, and library teachers to teach computer science content. Seldom, however, do schools leverage the rich opportunities for integrating computer science with physical education (PE). This paper explores an on-going partnership among university researchers, and elementary school coding and PE teachers. During spring of 2021, the group designed and tested coding and physical movement related activities for students to complete across their PE and coding classes. The team iterated on those activities throughout 2021 and 2022. This paper highlights the utility of this unique collaboration and describes some of the initial designs that emerged. The paper also touches on preliminary evaluation of the activities, and notes some of the project team's plans for future iterations. Broadly speaking, the activities piqued student interest and helped advance new perspectives of themselves, CS, and their teachers.more » « less
-
Programming can be an emotional experience, particularly for undergraduate students who are new to computer science. While researchers have interviewed novice programmers about their emotional experiences, it can be difficult to pinpoint the specific emotions that occur during a programming session. In this paper, we argue that electrodermal activity (EDA) sensors, which measure the physiological changes that are indicative of an emotional reaction, can provide a valuable new data source to help study student experiences. We conducted a study with 14 undergraduate students in which we collected EDA data while they worked on a programming problem. This data was then used to cue the participants’ recollections of their emotions during a retrospective interview about the programming experience. Using this methodology, we identified 21 distinct events that triggered student emotions, such as feeling anxiety due to a lack of perceived progress on the problem. We also identified common patterns in EDA data across multiple participants, such as a drop in their physiological reaction after developing a plan, corresponding with a calmer emotional state. These findings provide new information about how students experience programming that can inform research and practice, and also contribute initial evidence of the value of EDA data in supporting studies of emotions while programming.more » « less
-
In the last decade, HCI researchers have designed and engineered several systems to lower the entry barrier for beginners and support novices in learning hands-on creative maker skills. These skills range from building electronics to fabricating physical artifacts. While much of the design and engineering of current learning systems is driven by the advances in technology, we can reimagine these systems by reorienting the design goals around constructivist and sociocultural theories of learning to support learning progression, engagement across artistic disciplines, and designing for inclusivity and accessibility. This one-day workshop aims to bring together the HCI researchers in systems engineering and learning sciences, challenge them to reimagine the future design of systems of learning creative maker skills, form connections across disciplines, and promote collaborative research in the systems of learning creative skills.more » « less
-
Spatial reasoning is an important skillset that is malleable to training interventions. One possible context for intervention is the popular video game Minecraft. Minecraft encourages users to engage in spatial manipulation of 3D objects. However, few papers have chronicled any in-game practices that might evidence spatial reasoning, or how we might study its development through the game. In this paper, we report on 11 middle school students’ spatial reasoning practices while playing Minecraft. We use audio and video data of student gameplay to delineate five in-game practices that align with spatial reasoning. We expand on a student case study, to explicate these practices. The identified practices may be beneficial for studying spatial reasoning development in game-based environments and contribute to a growing body of research on ways games support development of important and transferable skills.more » « less