skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Worsnop, Douglas R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Anthropogenic ammonia (NH3) emissions have significantly increased in recent decades due to enhanced agricultural activities, contributing to global air pollution. While the effects of NH3on surface air quality are well documented, its influence on particle dynamics in the upper troposphere-lower stratosphere (UTLS) and related aerosol impacts remain unquantified. NH3reaches the UTLS through convective transport and can enhance new particle formation (NPF). This modeling study evaluates the global impact of anthropogenic NH3on UTLS particle formation and quantifies its effects on aerosol loading and cloud condensation nuclei (CCN) abundance. We use the EMAC Earth system model, incorporating multicomponent NPF parameterizations from the CERN CLOUD experiment. Our simulations reveal that convective transport increases NH3-driven NPF in the UTLS by one to three orders of magnitude compared to a baseline scenario without anthropogenic NH3, causing a doubling of aerosol numbers over high-emission regions. These aerosol changes induce a 2.5-fold increase in upper tropospheric CCN concentrations. Anthropogenic NH3emissions increase the relative contribution of water-soluble inorganic ions to the UTLS aerosol optical depth (AOD) by 20% and increase total column AOD by up to 80%. In simulations without anthropogenic NH3, UTLS aerosol composition is dominated by sulfate and organic species, with a marked reduction in ammonium nitrate and aerosol water content. This results in a decline of aerosol mass concentration by up to 50%. These findings underscore the profound global influence of anthropogenic NH3emissions on UTLS particle formation, AOD, and CCN production, with important implications for cloud formation and climate. 
    more » « less
    Free, publicly-accessible full text available November 4, 2026
  2. Abstract Haze in Beijing is linked to atmospherically formed secondary organic aerosol, which has been shown to be particularly harmful to human health. However, the sources and formation pathways of these secondary aerosols remain largely unknown, hindering effective pollution mitigation. Here we have quantified the sources of organic aerosol via direct near-molecular observations in central Beijing. In winter, organic aerosol pollution arises mainly from fresh solid-fuel emissions and secondary organic aerosols originating from both solid-fuel combustion and aqueous processes, probably involving multiphase chemistry with aromatic compounds. The most severe haze is linked to secondary organic aerosols originating from solid-fuel combustion, transported from the Beijing–Tianjing–Hebei Plain and rural mountainous areas west of Beijing. In summer, the increased fraction of secondary organic aerosol is dominated by aromatic emissions from the Xi’an–Shanghai–Beijing region, while the contribution of biogenic emissions remains relatively small. Overall, we identify the main sources of secondary organic aerosol affecting Beijing, which clearly extend beyond the local emissions in Beijing. Our results suggest that targeting key organic precursor emission sectors regionally may be needed to effectively mitigate organic aerosol pollution. 
    more » « less
  3. Abstract Isoprene (C5H8) is the non-methane hydrocarbon with the highest emissions to the atmosphere. It is mainly produced by vegetation, especially broad-leaved trees, and efficiently transported to the upper troposphere in deep convective clouds, where it is mixed with lightning NOx. Isoprene oxidation products drive rapid formation and growth of new particles in the tropical upper troposphere. However, isoprene oxidation pathways at low temperatures are not well understood. Here, in experiments at the CERN CLOUD chamber at 223 K and 243 K, we find that isoprene oxygenated organic molecules (IP-OOM) all involve two successive$${{{\rm{OH}}}}^{\bullet}$$ OH oxidations. However, depending on the ambient concentrations of the termination radicals ($${{{{\rm{HO}}}}_{2}}^{\bullet},\,{{{\rm{NO}}}}^{\bullet}$$ HO 2 , NO , and$${{{\rm{NO}}}}_{2}^{\bullet}$$ NO 2 ), vastly-different IP-OOM emerge, comprising compounds with zero, one or two nitrogen atoms. Our findings indicate high IP-OOM production rates for the tropical upper troposphere, mainly resulting in nitrate IP-OOM but with an increasing non-nitrate fraction around midday, in close agreement with aircraft observations. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  4. Abstract. We present a novel photolytic source of gas-phase NO3 suitable for use in atmospheric chemistry studies that has several advantages over traditional sources that utilize NO2 + O3 reactions and/or thermal dissociation of dinitrogen pentoxide (N2O5). The method generates NO3 via irradiation of aerated aqueous solutions of ceric ammonium nitrate (CAN, (NH4)2Ce(NO3)6) and nitric acid (HNO3) or sodium nitrate (NaNO3). We present experimental and model characterization of the NO3 formation potential of irradiated CAN / HNO3 and CAN / NaNO3 mixtures containing [CAN] = 10−3 to 1.0 M, [HNO3] = 1.0 to 6.0 M, [NaNO3] = 1.0 to 4.8 M, photon fluxes (I) ranging from 6.9 × 1014 to 1.0 × 1016 photons cm−2 s−1, and irradiation wavelengths ranging from 254 to 421 nm. NO3 mixing ratios ranging from parts per billion to parts per million by volume were achieved using this method. At the CAN solubility limit, maximum [NO3] was achieved using [HNO3] ≈ 3.0 to 6.0 M and UVA radiation (λmax⁡ = 369 nm) in CAN / HNO3 mixtures or [NaNO3] ≥ 1.0 M and UVC radiation (λmax⁡ = 254 nm) in CAN / NaNO3 mixtures. Other reactive nitrogen (NO2, N2O4, N2O5, N2O6, HNO2, HNO3, HNO4) and reactive oxygen (HO2, H2O2) species obtained from the irradiation of ceric nitrate mixtures were measured using a NOx analyzer and an iodide-adduct high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS). To assess the applicability of the method for studies of NO3-initiated oxidative aging processes, we generated and measured the chemical composition of oxygenated volatile organic compounds (OVOCs) and secondary organic aerosol (SOA) from the β-pinene + NO3 reaction using a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to the HR-ToF-CIMS. 
    more » « less
  5. Abstract Exposure to anthropogenic atmospheric aerosol is a major health issue, causing several million deaths per year worldwide. The oxidation of aromatic hydrocarbons from traffic and wood combustion is an important anthropogenic source of low-volatility species in secondary organic aerosol, especially in heavily polluted environments. It is not yet established whether the formation of anthropogenic secondary organic aerosol involves mainly rapid autoxidation, slower sequential oxidation steps or a combination of the two. Here we reproduced a typical urban haze in the ‘Cosmics Leaving Outdoor Droplets’ chamber at the European Organization for Nuclear Research and observed the dynamics of aromatic oxidation products during secondary organic aerosol growth on a molecular level to determine mechanisms underlying their production and removal. We demonstrate that sequential oxidation is required for substantial secondary organic aerosol formation. Second-generation oxidation decreases the products’ saturation vapour pressure by several orders of magnitude and increases the aromatic secondary organic aerosol yields from a few percent to a few tens of percent at typical atmospheric concentrations. Through regional modelling, we show that more than 70% of the exposure to anthropogenic organic aerosol in Europe arises from second-generation oxidation. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  6. Inhomogeneities in temperature and ammonia concentrations can cause rapid growth of nanoparticles in polluted environments. 
    more » « less