Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 31, 2025
-
We consider a Fermi–Pasta–Ulam–Tsingou lattice with randomly varying coefficients. We discover a relatively simple condition which when placed on the nature of the randomness allows us to prove that small amplitude/long wavelength solutions are almost surely rigorously approximated by solutions of Korteweg–de Vries equations for very long times. The key ideas combine energy estimates with homogenization theory and the technical proof requires a novel application of autoregressive processes.more » « lessFree, publicly-accessible full text available July 1, 2025
-
We consider a linear Fermi-Pasta-Ulam-Tsingou lattice with random spatially varying material coefficients. Using the methods of stochastic homogenization we show that solutions with long wave initial data converge in an appropriate sense to solutions of a wave equation. The convergence is strong and both almost sure and in expectation, but the rate is quite slow. The technique combines energy estimates with powerful classical results about random walks, specifically the law of the iterated logarithm.more » « less