We derive new kinetic and a porous medium equations from the nonlinear Schrödinger equation with random potentials. The kinetic equation has a very similar form compared to the four-wave turbulence kinetic equation in the wave turbulence theory. Moreover, we construct a class of self-similar solutions for the porous medium equation. These solutions spread with time, and this fact answers the “weak turbulence” question for the nonlinear Schrödinger equation with random potentials. We also derive Ohm’s law for the porous medium equation.
more »
« less
Using random walks to establish wavelike behavior in a linear FPUT system with random coefficients
We consider a linear Fermi-Pasta-Ulam-Tsingou lattice with random spatially varying material coefficients. Using the methods of stochastic homogenization we show that solutions with long wave initial data converge in an appropriate sense to solutions of a wave equation. The convergence is strong and both almost sure and in expectation, but the rate is quite slow. The technique combines energy estimates with powerful classical results about random walks, specifically the law of the iterated logarithm.
more »
« less
- Award ID(s):
- 2006172
- PAR ID:
- 10353419
- Date Published:
- Journal Name:
- Discrete and Continuous Dynamical Systems - S
- Volume:
- 15
- Issue:
- 9
- ISSN:
- 1937-1632
- Page Range / eLocation ID:
- 2581
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the paraxial wave equation with a randomly perturbed index of refraction, which can model the propagation of a wave beam in a turbulent medium. The random perturbation is a stationary and isotropic process with a general form of the covariance that may or may not be integrable. We focus attention mostly on the nonintegrable case, which corresponds to a random perturbation with long-range correlations, that is, relevant for propagation through a cloudy turbulent atmosphere. The analysis is carried out in a high-frequency regime where the forward scattering approximation holds. It reveals that the randomization of the wave field is multiscale: The travel time of the wave front is randomized at short distances of propagation, and it can be described by a fractional Brownian motion. The wave field observed in the random travel time frame is affected by the random perturbations at long distances, and it is described by a Schr\"odinger-type equation driven by a standard Brownian field. We use these results to quantify how scattering leads to decorrelation of the spatial and spectral components of the wave field and to a deformation of the pulse emitted by the source. These are important questions for applications, such as imaging and free space communications with pulsed laser beams through a turbulent atmosphere. We also compare the results with those used in the optics literature, which are based on the Kolmogorov model of turbulence. We show explicitly that the commonly used approximations for the decorrelation of spatial and spectral components are appropriate for the Kolmogorov model but fail for models with long-range correlations.more » « less
-
We consider random wave coupling along a flat boundary in dimension three, where the coupling is between surface and body modes and is induced by scattering by a randomly heterogeneous medium. In an appropriate scaling regime we obtain a system of radiative transfer equations which are satisfied by the mean Wigner transform of the mode amplitudes. We provide a rigorous probabilistic framework for describing solutions to this system using that it has the form of a Kolmogorov equation for some Markov process. We then prove statistical stability of the smoothed Wigner transform under the Gaussian approximation. We conclude with analyzing the nonlinear inverse problem for the radiative transfer equations and establish the unique recovery of phase and group velocities as well as power spectral information for the medium fluctuations from the observed smoothed Wigner transform. The mentioned statistical stability is essential in monitoring applications where the realization of the random medium may change.more » « less
-
null (Ed.)The weak localization or enhanced backscattering phenomenon has received a lot of attention in the literature. The enhanced backscattering cone refers to the situation that the wave backscattered by a random medium exhibits an enhanced intensity in a narrow cone around the incoming wave direction. This phenomenon can be analyzed by a formal path integral approach. Here a mathematical derivation of this result is given based on a system of equations that describes the second-order moments of the reflected wave. This system derives from a multiscale stochastic analysis of the wave field in the situation with high-frequency waves and propagation through a lossy medium with fine scale random microstructure. The theory identifies a duality relation between the spreading of the wave and the enhanced backscattering cone. It shows how the cone, its regularity and width relate to the statistical structure of the random medium. We discuss how this information in particular can be used to estimate the internal structure of the random medium based on observations of the reflected wave.more » « less
-
Motivated by the statistical analysis of the discrete optimal transport problem, we prove distributional limits for the solutions of linear programs with random constraints. Such limits were first obtained by Klatt, Munk, & Zemel (2022), but their expressions for the limits involve a computationally intractable decomposition of R^m into a possibly exponential number of convex cones. We give a new expression for the limit in terms of auxiliary linear programs, which can be solved in polynomial time. We also leverage tools from random convex geometry to give distributional limits for the entire set of random optimal solutions, when the optimum is not unique. Finally, we describe a simple, data-driven method to construct asymptotically valid confidence sets in polynomial time.more » « less
An official website of the United States government

