skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wright, Nathaniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Transdermal delivery is an attractive delivery method that increases bioavailability, is suitable for a wide variety of therapeutics, and offers stable delivery outcomes. However, many therapeutics are unable to readily cross the stratum corneum. Microneedles mechanically disrupt the cutaneous barrier to deliver small molecules, proteins, and vaccines. To date, microneedles have not been used in conjunction with coacervate, a liquid–liquid phase separation that protects unstable proteins. A three‐layer microneedle for the controlled release of three different molecules is designed. Through micromolding, microneedles are efficiently generated, which benefits product scalability. The microneedles have good mechanical integrity and effectively penetrate porcine skin ex vivo. The three layers, in the microneedles, release the cargo in a three‐phase manner. The released protein maintains its structure well. Moreover, layer thickness can be controlled by varying fabrication parameters. The microneedles can incorporate both small molecule drugs and protein therapeutics, thus promising uses in multi‐drug therapies through a single treatment. 
    more » « less
  2. Abstract The cellular glycocalyx and extracellular matrix are rich in glycoproteins and proteoglycans that play essential physical and biochemical roles in all life. Synthetic mimics of these natural bottlebrush polymers have wide applications in biomedicine, yet preparation has been challenged by their high grafting and glycosylation densities. Using one-pot dual-catalysis polymerization of glycan-bearing α-amino acidN-carboxyanhydrides, we report grafting-from glycopolypeptide brushes. The materials are chemically and conformationally tunable where backbone and sidechain lengths were precisely altered, grafting density modulated up to 100%, and glycan density and identity tuned by monomer feed ratios. The glycobrushes are composed entirely of sugars and amino acids, are non-toxic to cells, and are degradable by natural proteases. Inspired by native lipid-anchored proteoglycans, cholesterol-modified glycobrushes were displayed on the surface of live human cells. Our materials overcome long-standing challenges in glycobrush polymer synthesis and offer new opportunities to examine glycan presentation and multivalency from chemically defined scaffolds. 
    more » « less