skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Wu, Chengfa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Up to the third-order rogue wave solutions of the Sasa–Satsuma (SS) equation are derived based on the Hirota’s bilinear method and Kadomtsev–Petviashvili hierarchy reduction method. They are expressed explicitly by rational functions with both the numerator and denominator being the determinants of even order. Four types of intrinsic structures are recognized according to the number of zero-amplitude points. The first- and second-order rogue wave solutions agree with the solutions obtained so far by the Darboux transformation. In spite of the very complicated solution form compared with the ones of many other integrable equations, the third-order rogue waves exhibit two configurations: either a triangle or a distorted pentagon. Both the types and configurations of the third-order rogue waves are determined by different choices of free parameters. As the nonlinear Schrödinger equation is a limiting case of the SS equation, it is shown that the degeneration of the first-order rogue wave of the SS equation converges to the Peregrine soliton. 
    more » « less
  2. General breather solution to the Sasa–Satsuma equation (SSE) is systematically investigated in this paper. We firstly transform the SSE into a set of three Hirota bilinear equations under a proper plane wave boundary condition. Starting from a specially arranged tau-function of the Kadomtsev–Petviashvili hierarchy and a set of 11 bilinear equations satisfied, we implement a series steps of reduction procedure, i.e. C-type reduction, dimension reduction and complex conjugate reduction, and reduce these 11 equations to three bilinear equations for the SSE. Meanwhile, the general breather solution to the SSE is found in determinant of even order. The one- and two-breather solutions are calculated and analysed in detail. 
    more » « less