skip to main content

Search for: All records

Creators/Authors contains: "Wu, Hongyi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Image-based localization has been widely used for autonomous vehicles, robotics, augmented reality, etc., and this is carried out by matching a query image taken from a cell phone or vehicle dashcam to a large scale of geo-tagged reference images, such as satellite/aerial images or Google Street Views. However, the problem remains challenging due to the inconsistency between the query images and the large-scale reference datasets regarding various light and weather conditions. To tackle this issue, this work proposes a novel view synthesis framework equipped with deep generative models, which can merge the unique features from the outdated reference dataset with features from the images containing seasonal changes. Our design features a unique scheme to ensure that the synthesized images contain the important features from both reference and patch images, covering seasonable features and minimizing the gap for the image-based localization tasks. The performance evaluation shows that the proposed framework can synthesize the views in various weather and lighting conditions.

    more » « less
    Free, publicly-accessible full text available April 1, 2024
  2. The Data-Enabled Advanced Computational Training Program for Cybersecurity Research and Education (DeapSECURE) is a non-degree training consisting of six modules covering a broad range of cyberinfrastructure techniques, including high performance computing, big data, machine learning and advanced cryptography, aimed at reducing the gap between current cybersecurity curricula and requirements needed for advanced research and industrial projects. Since 2020, these lesson modules have been updated and retooled to suit fully-online delivery. Hands-on activities were reformatted to accommodate self-paced learning. In this paper, we summarize the four years of the project comparing in-person and on-line only instruction methods as well as outlining lessons learned. The module content and hands-on materials are being released as open-source educational resources. We also indicate our future direction to scale up and increase adoption of the DeapSECURE training program to benefit cybersecurity research everywhere. 
    more » « less
  3. Existing adversarial algorithms for Deep Reinforcement Learning (DRL) have largely focused on identifying an optimal time to attack a DRL agent. However, little work has been explored in injecting efficient adversarial perturbations in DRL environments. We propose a suite of novel DRL adversarial attacks, called ACADIA, representing AttaCks Against Deep reInforcement leArning. ACADIA provides a set of efficient and robust perturbation-based adversarial attacks to disturb the DRL agent's decision-making based on novel combinations of techniques utilizing momentum, ADAM optimizer (i.e., Root Mean Square Propagation, or RMSProp), and initial randomization. These kinds of DRL attacks with novel integration of such techniques have not been studied in the existing Deep Neural Networks (DNNs) and DRL research. We consider two well-known DRL algorithms, Deep-Q Learning Network (DQN) and Proximal Policy Optimization (PPO), under Atari games and MuJoCo where both targeted and non-targeted attacks are considered with or without the state-of-the-art defenses in DRL (i.e., RADIAL and ATLA). Our results demonstrate that the proposed ACADIA outperforms existing gradient-based counterparts under a wide range of experimental settings. ACADIA is nine times faster than the state-of-the-art Carlini & Wagner (CW) method with better performance under defenses of DRL. 
    more » « less
  4. We report a new neural backdoor attack, named Hibernated Backdoor, which is stealthy, aggressive and devastating. The backdoor is planted in a hibernated mode to avoid being detected. Once deployed and fine-tuned on end-devices, the hibernated backdoor turns into the active state that can be exploited by the attacker. To the best of our knowledge, this is the first hibernated neural backdoor attack. It is achieved by maximizing the mutual information (MI) between the gradients of regular and malicious data on the model. We introduce a practical algorithm to achieve MI maximization to effectively plant the hibernated backdoor. To evade adaptive defenses, we further develop a targeted hibernated backdoor, which can only be activated by specific data samples and thus achieves a higher degree of stealthiness. We show the hibernated backdoor is robust and cannot be removed by existing backdoor removal schemes. It has been fully tested on four datasets with two neural network architectures, compared to five existing backdoor attacks, and evaluated using seven backdoor detection schemes. The experiments demonstrate the effectiveness of the hibernated backdoor attack under various settings. 
    more » « less