skip to main content

Search for: All records

Creators/Authors contains: "Wu, Jason"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As augmented and virtual reality (AR/VR) technology matures, a method is desired to represent real-world persons visually and aurally in a virtual scene with high fidelity to craft an immersive and realistic user experience. Current technologies leverage camera and depth sensors to render visual representations of subjects through avatars, and microphone arrays are employed to localize and separate high-quality subject audio through beamforming. However, challenges remain in both realms. In the visual domain, avatars can only map key features (e.g., pose, expression) to a predetermined model, rendering them incapable of capturing the subjects’ full details. Alternatively, high-resolution point clouds can be utilized to represent human subjects. However, such three-dimensional data is computationally expensive to process. In the realm of audio, sound source separation requires prior knowledge of the subjects’ locations. However, it may take unacceptably long for sound source localization algorithms to provide this knowledge, which can still be error-prone, especially with moving objects. These challenges make it difficult for AR systems to produce real-time, high-fidelity representations of human subjects for applications such as AR/VR conferencing that mandate negligible system latency. We present Acuity, a real-time system capable of creating high-fidelity representations of human subjects in a virtual scene both visually and aurally. Acuity isolates subjects from high-resolution input point clouds. It reduces the processing overhead by performing background subtraction at a coarse resolution, then applying the detected bounding boxes to fine-grained point clouds. Meanwhile, Acuity leverages an audiovisual sensor fusion approach to expedite sound source separation. The estimated object location in the visual domain guides the acoustic pipeline to isolate the subjects’ voices without running sound source localization. Our results demonstrate that Acuity can isolate multiple subjects’ high-quality point clouds with a maximum latency of 70 ms and average throughput of over 25 fps, while separating audio in less than 30 ms. We provide the source code of Acuity at: 
    more » « less
    Free, publicly-accessible full text available May 9, 2024
  2. Free, publicly-accessible full text available March 15, 2024