Intelligent systems commonly employ vision sensors like cameras to analyze a scene. Recent work has proposed a wireless sensing technique, wireless vibrometry, to enrich the scene analysis generated by vision sensors. Wireless vibrometry employs wireless signals to sense subtle vibrations from the objects and infer their internal states. However, it is difficult for pure Radio-Frequency (RF) sensing systems to obtain objects' visual appearances (e.g., object types and locations), especially when an object is inactive. Thus, most existing wireless vibrometry systems assume that the number and the types of objects in the scene are known. The key to getting rid of these presumptions is to build a connection between wireless sensor time series and vision sensor images. We present Capricorn, a vision-guided wireless vibrometry system. In Capricorn, the object type information from vision sensors guides the wireless vibrometry system to select the most appropriate signal processing pipeline. The object tracking capability in computer vision also helps wireless systems efficiently detect and separate vibrations from multiple objects in real time.
more »
« less
Capricorn: Towards Real-Time Rich Scene Analysis Using RF-Vision Sensor Fusion
Video scene analysis is a well-investigated area where researchers have devoted efforts to detect and classify people and objects in the scene. However, real-life scenes are more complex: the intrinsic states of the objects (e.g., machine operating states or human vital signals) are often overlooked by vision-based scene analysis. Recent work has proposed a radio frequency (RF) sensing technique, wireless vibrometry, that employs wireless signals to sense subtle vibrations from the objects and infer their internal states. We envision that the combination of video scene analysis with wireless vibrometry form a more comprehensive understanding of the scene, namely "rich scene analysis". However, the RF sensors used in wireless vibrometry only provide time series, and it is challenging to associate these time series data with multiple real-world objects. We propose a real-time RF-vision sensor fusion system, Capricorn, that efficiently builds a cross-modal correspondence between visual pixels and RF time series to better understand the complex natures of a scene. The vision sensors in Capricorn model the surrounding environment in 3D and obtain the distances of different objects. In the RF domain, the distance is proportional to the signal time-of-flight (ToF), and we can leverage the ToF to separate the RF time series corresponding to each object. The RF-vision sensor fusion in Capricorn brings multiple benefits. The vision sensors provide environmental contexts to guide the processing of RF data, which helps us select the most appropriate algorithms and models. Meanwhile, the RF sensor yields additional information that is originally invisible to vision sensors, providing insight into objects' intrinsic states. Our extensive evaluations show that Capricorn real-timely monitors multiple appliances' operating status with an accuracy of 97%+ and recovers vital signals like respirations from multiple people. A video (https://youtu.be/b-5nav3Fi78) demonstrates the capability of Capricorn.
more »
« less
- Award ID(s):
- 1705135
- PAR ID:
- 10494742
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems
- ISBN:
- 9781450398862
- Page Range / eLocation ID:
- 334 to 348
- Format(s):
- Medium: X
- Location:
- Boston, Massachusetts
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a method for reconstructing 3D shape of arbitrary Lambertian objects based on measurements by miniature, energy-efficient, low-cost single-photon cameras. These cameras, operating as time resolved image sensors, illuminate the scene with a very fast pulse of diffuse light and record the shape of that pulse as it returns back from the scene at a high temporal resolution. We propose to model this image formation process, account for its non-idealities, and adapt neural rendering to reconstruct 3D geometry from a set of spatially distributed sensors with known poses. We show that our approach can successfully recover complex 3D shapes from simulated data. We further demonstrate 3D object reconstruction from real-world captures, utilizing measurements from a commodity proximity sensor. Our work draws a connection between image-based modeling and active range scanning and is a step towards 3D vision with single-photon cameras.more » « less
-
From courtship rituals, to prey identification, to displays of rivalry, a spider’s web vibrates with a symphony of information. Examining the modality of information being transmitted and how spiders interact with this information could lead to new understanding how spiders perceive the world around them through their webs, and new biological and engineering techniques that leverage this understanding. Spiders interact with their webs through a variety of body motions, including abdominal tremors, bounces, and limb jerks along threads of the web. These signals often create a large enough visual signature that the web vibrations can be analyzed using video vibrometry on high-speed video of the communication exchange. Using video vibrometry to examine these signals has numerous benefits over the conventional method of laser vibrometry, such as the ability to analyze three-dimensional vibrations and the ability to take measurements from anywhere in the web, including directly from the body of the spider itself. In this study, we developed a method of three-dimensional vibration analysis that combines video vibrometry with stereo vision, and verified this method against laser vibrometry on a black widow spiderweb that was experiencing rivalry signals from two female spiders.more » « less
-
Neural networks can represent and accurately reconstruct radiance fields for static 3D scenes (e.g., NeRF). Several works extend these to dynamic scenes captured with monocular video, with promising performance. However, the monocular setting is known to be an under-constrained problem, and so methods rely on data-driven priors for reconstructing dynamic content. We replace these priors with measurements from a time-of-flight (ToF) camera, and introduce a neural representation based on an image formation model for continuous-wave ToF cameras. Instead of working with processed depth maps, we model the raw ToF sensor measurements to improve reconstruction quality and avoid issues with low reflectance regions, multi-path interference, and a sensor's limited unambiguous depth range. We show that this approach improves robustness of dynamic scene reconstruction to erroneous calibration and large motions, and discuss the benefits and limitations of integrating RGB+ToF sensors now available on modern smartphones.more » « less
-
Neural networks can represent and accurately reconstruct radiance fields for static 3D scenes (e.g., NeRF). Several works extend these to dynamic scenes captured with monocular video, with promising performance. However, the monocular setting is known to be an under-constrained problem, and so methods rely on data-driven priors for reconstructing dynamic content. We replace these priors with measurements from a time-of-flight (ToF) camera, and introduce a neural representation based on an image formation model for continuous-wave ToF cameras. Instead of working with processed depth maps, we model the raw ToF sensor measurements to improve reconstruction quality and avoid issues with low reflectance regions, multi-path interference, and a sensor's limited unambiguous depth range. We show that this approach improves robustness of dynamic scene reconstruction to erroneous calibration and large motions, and discuss the benefits and limitations of integrating RGB+ToF sensors that are now available on modern smartphones.more » « less