skip to main content

Search for: All records

Creators/Authors contains: "Wu, Lingfei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep learning’s performance has been extensively recognized recently. Graph neural networks (GNNs) are designed to deal with graph-structural data that classical deep learning does not easily manage. Since most GNNs were created using distinct theories, direct comparisons are impossible. Prior research has primarily concentrated on categorizing existing models, with little attention paid to their intrinsic connections. The purpose of this study is to establish a unified framework that integrates GNNs based on spectral graph and approximation theory. The framework incorporates a strong integration between spatial- and spectral-based GNNs while tightly associating approaches that exist within each respective domain.

    more » « less
    Free, publicly-accessible full text available May 31, 2025
  2. Free, publicly-accessible full text available November 29, 2024
  3. With teams growing in all areas of scientific and scholarly research, we explore the relationship between team structure and the character of knowledge they produce. Drawing on 89,575 self-reports of team member research activity underlying scientific publications, we show how individual activities cohere into broad roles of 1) leadership through the direction and presentation of research and 2) support through data collection, analysis, and discussion. The hidden hierarchy of a scientific team is characterized by its lead (or L) ratio of members playing leadership roles to total team size. The L ratio is validated through correlation with imputed contributions to the specific paper and to science as a whole, which we use to effectively extrapolate the L ratio for 16,397,750 papers where roles are not explicit. We find that, relative to flat, egalitarian teams, tall, hierarchical teams produce less novelty and more often develop existing ideas, increase productivity for those on top and decrease it for those beneath, and increase short-term citations but decrease long-term influence. These effects hold within person—the same person on the same-sized team produces science much more likely to disruptively innovate if they work on a flat, high-L-ratio team. These results suggest the critical role flat teams play for sustainable scientific advance and the training and advancement of scientists. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)