skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wu, Qingyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY Carotenoids perform a broad range of important functions in humans; therefore, carotenoid biofortification of maize (Zea maysL.), one of the most highly produced cereal crops worldwide, would have a global impact on human health.PLASTID TERMINAL OXIDASE(PTOX) genes play an important role in carotenoid metabolism; however, the possible function ofPTOXin carotenoid biosynthesis in maize has not yet been explored. In this study, we characterized the maizePTOXlocus by forward‐ and reverse‐genetic analyses. While most higher plant species possess a single copy of thePTOXgene, maize carries two tandemly duplicated copies. Characterization of mutants revealed that disruption of either copy resulted in a carotenoid‐deficient phenotype. We identified mutations in thePTOXgenes as being causal of the classic maize mutant,albescent1. Remarkably, overexpression ofZmPTOX1significantly improved the content of carotenoids, especially β‐carotene (provitamin A), which was increased by ~threefold, in maize kernels. Overall, our study shows that maizePTOXlocus plays an important role in carotenoid biosynthesis in maize kernels and suggests that fine‐tuning the expression of this gene could improve the nutritional value of cereal grains. 
    more » « less
  2. Summary Increasing populations and temperatures are expected to escalate food demands beyond production capacities, and the development of maize lines with better performance under heat stress is desirable. Here, we report that constitutive ectopic expression of a heterologous glutaredoxin S17 fromArabidopsis thaliana(AtGRXS17) can provide thermotolerance in maize through enhanced chaperone activity and modulation of heat stress‐associated gene expression. The thermotolerant maize lines had increased protection against protein damage and yielded a sixfold increase in grain production in comparison to the non‐transgenic counterparts under heat stress field conditions. The maize lines also displayed thermotolerance in the reproductive stages, resulting in improved pollen germination and the higher fidelity of fertilized ovules under heat stress conditions. Our results present a robust and simple strategy for meeting rising yield demands in maize and, possibly, other crop species in a warming global environment. 
    more » « less