skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wu, Weichen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Markov chains are fundamental to statistical machine learning, underpinning key methodologies such as Markov Chain Monte Carlo (MCMC) sampling and temporal difference (TD) learning in reinforcement learning (RL). Given their widespread use, it is crucial to establish rigorous probabilistic guarantees on their convergence, uncertainty, and stability. In this work, we develop novel, high-dimensional concentration inequalities and Berry-Esseen bounds for vector- and matrix-valued functions of Markov chains, addressing key limitations in existing theoretical tools for handling dependent data. We leverage these results to analyze the TD learning algorithm, a widely used method for policy evaluation in RL. Our analysis yields a sharp high-probability consistency guarantee that matches the asymptotic variance up to logarithmic factors. Furthermore, we establish a O(T−14logT) distributional convergence rate for the Gaussian approximation of the TD estimator, measured in convex distance. These findings provide new insights into statistical inference for RL algorithms, bridging the gaps between classical stochastic approximation theory and modern reinforcement learning applications. 
    more » « less
    Free, publicly-accessible full text available February 20, 2026
  2. Dasgupta, Sanjoy; Mandt, Stephan; Li, Yingzhen (Ed.)
    Persistence diagrams are one of the most pop- ular types of data summaries used in Topological Data Analysis. The prevailing statistical approach to analyzing persistence diagrams is concerned with filtering out topological noise. In this paper, we adopt a different viewpoint and aim at estimating the actual distribution of a random persistence diagram, which cap- tures both topological signal and noise. To that effect, Chazal and Divol (2019) proved that, under general conditions, the expected value of a random persistence diagram is a measure admitting a Lebesgue density, called the persistence intensity function. In this paper, we are concerned with estimating the persistence intensity function and a novel, normalized version of it – called the persistence density function. We present a class of kernel- based estimators based on an i.i.d. sample of persistence diagrams and derive estimation rates in the supremum norm. As a direct corollary, we obtain uniform consistency rates for estimating linear representations of persistence diagrams, including Betti numbers and persistence surfaces. Interestingly, the persistence density function delivers stronger statistical guarantees. 
    more » « less