- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
02000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Fay, Patrick (2)
-
Li, Lei (2)
-
Wang, Xiaopeng (2)
-
Wu, Weifeng (2)
-
Asadi, Mohammad Javad (1)
-
Fabi, Gianluca (1)
-
Hwang, James C. (1)
-
Hwang, James CM (1)
-
Ozdemir, Erdem (1)
-
Reyes, Steve (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper demonstrates a novel approach to the design of D-band power dividers, capitalizing on the benefits of Substrate Integrated Waveguide (SIW) technology in 100-μm thick SiC substrate. By leveraging the unique characteristics of SIW and utilizing silicon carbide as the substrate material, an average insertion loss as low as 0.26 dB, and average return loss of up to 24 dB has been achieved in simulation in D-band. Although D-band dividers employing coplanar waveguides and microstrip lines have been reported, to the best of our acknowledge, this is the first work on D-band SIW power dividers. The SIW technology is compatible with GaN-on-SiC MMIC fabrication process flows, and provides a novel platform for the integration of low-loss millimeter-wave combiners with III-N based electronics.more » « less
-
Li, Lei ; Reyes, Steve ; Asadi, Mohammad Javad ; Wang, Xiaopeng ; Fabi, Gianluca ; Ozdemir, Erdem ; Wu, Weifeng ; Fay, Patrick ; Hwang, James C. ( , 2023 100th ARFTG Microwave Measurement Conference (ARFTG))Currently, lacking suitable test structures, little data exist for the permittivity of hexagonal materials such as GaN and SiC at millimeter-wave frequencies, especially for the extraordinary permittivity ε || as opposed to the ordinary permittivity ε ⊥ . This paper demonstrates for the first time that it is possible to characterize ε || of c-axis 4H SiC using on-wafer measurements of substrate-integrated-waveguide resonators. In fact, measurements on eleven resonators yield a relative ε || of 10.27 ± 0.03 and a loss tangent tanδ<0.02 over the D band (110-170 GHz). The on-wafer measurements of resonators and other devices fabricated on the same SiC substrate can allow material property to be closely correlated with device performance. The present approach can be extended to materials of other types and orientations.more » « less