This is the first report of a distributed amplifier (DA) realized through monolithic integration of transistors with a substrate-integrated waveguide (SIW). The DA uses a stepped-impedance microstrip line as the input divider like in conventional DAs, but uses a low-loss, high-power-capacity SIW as the output combiner. The input signal is distributed to four GaN high-electron mobility transistors (HEMTs) evenly in magnitude but with the phase successively delayed by 90° at the fundamental frequency. The HEMTs are separated by a half wavelength at the second harmonic frequency in the SIW, so that their outputs are combined coherently at the SIW output. To overcome the limited speed of the GaN HEMTs, they are driven nonlinearly to generate second harmonics, and their fundamental outputs are suppressed with the SIW acting as a high-pass filter. The measured characteristics of the DA agree with that simulated at the small-signal level, but exceeds that simulated at the large-signal level. For example, under an input of 68 GHz and 10 dBm, the output at 136 GHz is 24-dB above the fundamental. Under an input of 68 GHz and 20 dBm, the output at 136 GHz is 14 dBm, with a conversion loss of 6 dB and a power consumption of 882 mW. This proof-of-principle demonstration opens the path to improving the gain, power and efficiency of DAs with higher-performance transistors and drive circuits. Although the demonstration is through monolithic integration, the approach is applicable to heterogeneous integration with the SIW and transistors fabricated on separate chips.
more »
« less
This content will become publicly available on September 21, 2026
High Power Characterization of SIW-based D-band Traveling Wave Amplifiers
The high-power performance of a D-band (110–170 GHz) traveling wave amplifier (TWA) is reported. The amplifier was designed and fabricated using a GaN-on-SiC high-electron mobility transistor (HEMT) technology integrated with a substrate integrated waveguide (SIW) structure for low-loss on-chip power combining. Active injection load-pull measurements of both discrete HEMTs as well as the completed MMIC TWA were performed. The discrete HEMT measurements at D-band supplement the available design data for these scaled GaN HEMTs. The TWA achieved a peak power-added efficiency (PAE) of 9.1% at 145 GHz. The available output power exceeded 23.5 dBm from 135-145 GHz, with a maximum output power of 24.7 dBm (295 mW) at 140 GHz. Keywords—millimeter
more »
« less
- Award ID(s):
- 2132329
- PAR ID:
- 10645713
- Publisher / Repository:
- European Microwave Conference, 2025
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper demonstrates the monolithic integration of a substrate-integrated waveguide bandpass filter (BPF) and a low-noise amplifier (LNA) at F-band, fabricated in a 70-nm GaN-on-SiC technology. The three-stage LNA alone achieves a state-of-the-art average noise figure of 3.6 dB over 87–115 GHz. The LNA + BPF exhibits a peak gain of 13.6 dB over a 3 dB bandwidth of 17 GHz from 104 to 121 GHz. The average noise figure is 4.9 dB over 87–115 GHz. The OP1 dB and saturated output power are 17.6dBm and >20 dBm, respectively.more » « less
-
Abstract Gallium nitride high-electron-mobility transistors (GaN HEMTs) are at a point of rapid growth in defense (radar, SATCOM) and commercial (5G and beyond) industries. This growth also comes at a point at which the standard GaN heterostructures remain unoptimized for maximum performance. For this reason, we propose the shift to the aluminum nitride (AlN) platform. AlN allows for smarter, highly-scaled heterostructure design that will improve the output power and thermal management of III-nitride amplifiers. Beyond improvements over the incumbent amplifier technology, AlN will allow for a level of integration previously unachievable with GaN electronics. State-of-the-art high-current p-channel FETs, mature filter technology, and advanced waveguides, all monolithically integrated with an AlN/GaN/AlN HEMT, is made possible with AlN. It is on this new AlN platform that nitride electronics may maximize their full high-power, high-speed potential for mm-wave communication and high-power logic applications.more » « less
-
Aluminum nitride (AlN) offers novel potential for electronic integration and performance benefits for high‐power, millimeter‐wave amplification. Herein, load‐pull power performance at 30 and 94 GHz for AlN/GaN/AlN high‐electron‐mobility transistors (HEMTs) on silicon carbide (SiC) is reported. When tuned for peak power‐added efficiency (PAE), the reported AlN/GaN/AlN HEMT shows PAE of 25% and 15%, with associated output power () of 2.5 and 1.7 W mm−1, at 30 and 94 GHz, respectively. At 94 GHz, the maximum generated is 2.2 W mm−1, with associated PAE of 13%.more » « less
-
This paper presents a dual-band RF rectifying circuit for wireless power transmission at 1.17 GHz and 2.4 GHz. A dual-band harmonic-tuned inverse-class F/class-F mode power amplifier using a 10 W GaN device has been utilized to implement the proposed rectifier with an on-board coupler and phase shifter. The matching circuit is precisely designed so that the circuit operates in inverse class F and class F mode in the lower and upper frequency bands using dual-band harmonic tuning, respectively. Measurement results show that the rectifier circuit has 78% and 76% efficiencies at 1.17 GHz and 2.4 GHz frequency bands, respectively. To the best of the authors' knowledge, this rectifier is the first demonstration of a dual-band harmonic-tuned synchronous rectifier using a GaN HEMT device with an integrated coupler and phase-shifter for a watt-level RF input power.more » « less
An official website of the United States government
