skip to main content

Search for: All records

Creators/Authors contains: "Wu, Xinyu Crystal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Priority-based Flow Control (PFC) protocol is adopted to guarantee zero packet loss in many high-performance data centers. PFC, however, can induce deadlocks and in severe cases cause the entire network to be blocked. Existing solutions have focused on deadlock avoidance; unfortunately, they are not foolproof. Therefore, deadlock detection is a necessity. We propose ITSY, a novel system that correctly detects and resolves deadlocks entirely in the data plane. It works with any network topologies and routing algorithms. Unique to ITSY is the use of deadlock initial triggers, which contributes to efficient deadlock detection, mitigation, and recurrence prevention. ITSY provides three deadlock resolution mechanisms with different trade-off options. We implement ITSY for programmable switches in the P4 language. Experiments show that ITSY detects and resolves deadlocks rapidly with minimal overheads. 
    more » « less
  2. An optical circuit-switched network core has the potential to overcome the inherent challenges of a conventional electrical packet-switched core of today's compute clusters. As optical circuit switches (OCS) directly handle the photon beams without any optical-electrical-optical (O/E/O) conversion and packet processing, OCS-based network cores have the following desirable properties: a) agnostic to data-rate, b) negligible/zero power consumption, c) no need of transceivers, d) negligible forwarding latency, and e) no need for frequent upgrade. Unfortunately, OCS can only provide point-to-point (unicast) circuits. They do not have built-in support for one-to-many (multicast) communication, yet multicast is fundamental to a plethora of data-intensive applications running on compute clusters nowadays. In this paper, we propose Shufflecast, a novel optical network architecture for next-generation compute clusters that can support high-performance multicast satisfying all the properties of an OCS-based network core. Shufflecast leverages small fanout, inexpensive, passive optical splitters to connect the Top-of-rack (ToR) switch ports, ensuring data-rate agnostic, low-power, physical-layer multicast. We thoroughly analyze Shufflecast's highly scalable data plane, light-weight control plane, and graceful failure handling. Further, we implement a complete prototype of Shufflecast in our testbed and extensively evaluate the network. Shufflecast is more power-efficient than the state-of-the-art multicast mechanisms. Also, Shufflecast is more cost-efficient than a conventional packet-switched network. By adding Shufflecast alongside an OCS-based unicast network, an all-optical network core with the aforementioned desirable properties supporting both unicast and multicast can be realized. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)