skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wu, Yinjun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Machine learning models can make critical errors that are easily hidden within vast amounts of data. Such errors often run counter to rules based on human intuition. However, rules based on human knowledge are challenging to scale or to even formalize. We thereby seek to infer statistical rules from the data and quantify the extent to which a model has learned them. We propose a framework SQRL that integrates logic-based methods with statistical inference to derive these rules from a model’s training data without supervision. We further show how to adapt models at test time to reduce rule violations and produce more coherent predictions. SQRL generates up to 300K rules over datasets from vision, tabular, and language settings. We uncover up to 158K violations of those rules by state-of-the-art models for classification, object detection, and data imputation. Test-time adaptation reduces these violations by up to 68.7% with relative performance improvement up to 32%. SQRL is available at https://github.com/DebugML/sqrl. 
    more » « less
  2. The ubiquitous use of machine learning algorithms brings new challenges to traditional database problems such as incremental view update. Much effort is being put in better understanding and debugging machine learning models, as well as in identifying and repairing errors in training datasets. Our focus is on how to assist these activities when they have to retrain the machine learning model after removing problematic training samples in cleaning or selecting different subsets of training data for interpretability. This paper presents an efficient provenance-based approach, PrIU, and its optimized version, PrIU-opt, for incrementally updating model parameters without sacrificing prediction accuracy. We prove the correctness and convergence of the incrementally updated model parameters, and validate it experimentally. Experimental results show that up to two orders of magnitude speed-ups can be achieved by PrIU-opt compared to simply retraining the model from scratch, yet obtaining highly similar models. 
    more » « less