Learning disentangled causal representations is a challenging problem that has gained significant attention recently due to its implications for extracting meaningful information for downstream tasks. In this work, we define a new notion of causal disentanglement from the perspective of independent causal mechanisms. We propose ICM-VAE, a framework for learning causally disentangled representations supervised by causally related observed labels. We model causal mechanisms using nonlinear learnable flow-based diffeomorphic functions to map noise variables to latent causal variables. Further, to promote the disentanglement of causal factors, we propose a causal disentanglement prior learned from auxiliary labels and the latent causal structure. We theoretically show the identifiability of causal factors and mechanisms up to permutation and elementwise reparameterization. We empirically demonstrate that our framework induces highly disentangled causal factors, improves interventional robustness, and is compatible with counterfactual generation.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 1, 2025
-
With the prevalence of machine learning in many high-stakes decision-making processes, e.g., hiring and admission, it is important to take fairness into account when practitioners design and deploy machine learning models, especially in scenarios with imperfectly labeled data. Multiple-Instance Learning (MIL) is a weakly supervised approach where instances are grouped in labeled bags, each containing several instances sharing the same label. However, current fairness-centric methods in machine learning often fall short when applied to MIL due to their reliance on instance-level labels. In this work, we introduce a Fair Multiple-Instance Learning (FMIL) framework to ensure fairness in weakly supervised learning. In particular, our method bridges the gap between bag-level and instance-level labeling by leveraging the bag labels, inferring high-confidence instance labels to improve both accuracy and fairness in MIL classifiers. Comprehensive experiments underscore that our FMIL framework substantially reduces biases in MIL without compromising accuracy.more » « lessFree, publicly-accessible full text available June 30, 2025
-
Ensuring fairness in anomaly detection models has received much attention recently as many anomaly detection applications involve human beings. However, existing fair anomaly detection approaches mainly focus on association-based fairness notions. In this work, we target counterfactual fairness, which is a prevalent causation-based fairness notion. The goal of counterfactually fair anomaly detection is to ensure that the detection outcome of an individual in the factual world is the same as that in the counterfactual world where the individual had belonged to a different group. To this end, we propose a counterfactually fair anomaly detection (CFAD) framework which consists of two phases, counterfactual data generation and fair anomaly detection. Experimental results on a synthetic dataset and two real datasets show that CFAD can effectively detect anomalies as well as ensure counterfactual fairness.more » « less