skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 AM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Wu, Yueh-Chun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 13, 2026
  2. We perform resonant Raman spectroscopy on 8◦ twisted bilayer graphene placed in an out-of-plane magnetic field. The high-quality device has narrow Landau level linewidth of less than 5 meV that enables detection of features from both electronic Raman scattering and magnetophonon resonance involving electronic transitions between the low energy Landau levels. Two magnetophonon resonances are observed, one at 4.6T in the strong coupling regime, and the other at 2.6T in the weak coupling regime. Using the measured Landau level transition energy, we analyze the renormalization of effective band velocity, whose dependence on magnetic field points to a 20% enhancement of dielectric constant due to the presence of an adjacent graphene layer, a quite prominent screening effect from a monolayer of carbon atoms in proximity. Both the Landau level transition electronic Raman and the magnetophonon resonance are gate tunable. Harnessing angular momentum conservation, we demonstrate charge tuning of electron phonon coupling strength for left and right circularly polarized G band phonons separately. 
    more » « less
  3. Monolayer transition metal dichalcogenide semiconductors are promising valleytronic materials. Among various quasi-particle excitations hosted by the system, the valley polarized holes are particularly interesting due to their long valley lifetime preserved by the large spin–orbit splitting and spin–valley locking in the valence band. Here we report that in the absence of any magnetic field a surprising valley splitting of exciton polarons can be induced by such valley polarized holes in monolayer WSe2. The size of the splitting is comparable to that of the Zeeman effect in a magnetic field as high as 7 T and offers a quantitative approach to extract the hole density imbalance between the two valleys. We find that the density difference can easily achieve more than 1011 per cm2, and it is tunable by gate voltage as well as optical excitation power. Our study highlights the response of exciton polarons to optical pumping and advances understanding of valley dependent phenomena in monolayer transition metal dichalcogenide. 
    more » « less
  4. Monolayer molybdenum di-selenide (1L-MoSe 2 ) stands out in the transition metal dichalcogenide family of materials as an outlier where optical generation of valley polarization is inefficient. Here we show that using charge doping in conjunction with an external magnetic field, the valley polarization of 1L-MoSe 2 can be controlled effectively. Most remarkably, the valley polarization can be tuned to negative values, where the higher energy Zeeman mode emission is more intense than the lower energy one. Our experimental observations are interpreted with valley-selective exciton-charge dressing that manifests when gate induced doping populates predominantly one valley in the presence of Zeeman splitting. 
    more » « less