skip to main content


Search for: All records

Creators/Authors contains: "Wu, Yun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Nanophotonic resonators can confine light to deep-subwavelength volumes with highly enhanced near-field intensity and therefore are widely used for surface-enhanced infrared absorption spectroscopy in various molecular sensing applications. The enhanced signal is mainly contributed by molecules in photonic hot spots, which are regions of a nanophotonic structure with high-field intensity. Therefore, delivery of the majority of, if not all, analyte molecules to hot spots is crucial for fully utilizing the sensing capability of an optical sensor. However, for most optical sensors, simple and straightforward methods of introducing an aqueous analyte to the device, such as applying droplets or spin-coating, cannot achieve targeted delivery of analyte molecules to hot spots. Instead, analyte molecules are usually distributed across the entire device surface, so the majority of the molecules do not experience enhanced field intensity. Here, we present a nanophotonic sensor design with passive molecule trapping functionality. When an analyte solution droplet is introduced to the sensor surface and gradually evaporates, the device structure can effectively trap most precipitated analyte molecules in its hot spots, significantly enhancing the sensor spectral response and sensitivity performance. Specifically, our sensors produce a reflection change of a few percentage points in response to trace amounts of the amino-acid proline or glucose precipitate with a picogram-level mass, which is significantly less than the mass of a molecular monolayer covering the same measurement area. The demonstrated strategy for designing optical sensor structures may also be applied to sensing nano-particles such as exosomes, viruses, and quantum dots.

     
    more » « less
  2. The cold angular rolling process (CARP) is being developed as a continuous severe plastic deformation technique, which can process metal sheets without any length limitations at room temperature. CARP contains cold rolling and equal‐channel angular process components. The sheet thickness is kept consistent before and after CARP, allowing multiple passes of the sheet. The desired microstructure and mechanical properties can be achieved in the processed metallic sheets. The current study is aimed to evaluate the capability of CARP by processing copper sheets with different sheet widths for repetitive passes. The CARP‐treated sheets are examined by lab‐scale X‐ray and high‐energy synchrotron X‐ray diffraction to investigate the evolution in dislocation density, texture, and strain anisotropy, and by tensile testing to identify the bulk mechanical properties. The digital image correlation method is applied to tensile testing so that strain localization within the sample gauge is visualized and deformation behavior is evaluated after yielding till postnecking by estimating the hardening exponent and strain hardening rate of the CARP‐treated sheet. Comparing the reported continuous and multiple‐step processes on Cu and its alloys, the present study confirms that the CARP is potentially a useful sheet process for strengthening ductile metals.

     
    more » « less
  3. Abstract The avian transition from long to short, distally fused tails during the Mesozoic ushered in the Pygostylian group, which includes modern birds. The avian tail embodies a bipartite anatomy, with the proximal separate caudal vertebrae region, and the distal pygostyle, formed by vertebral fusion. This study investigates developmental features of the two tail domains in different bird groups, and analyzes them in reference to evolutionary origins. We first defined the early developmental boundary between the two tail halves in the chicken, then followed major developmental structures from early embryo to post-hatching stages. Differences between regions were observed in sclerotome anterior/posterior polarity and peripheral nervous system development, and these were consistent in other neognathous birds. However, in the paleognathous emu, the neognathous pattern was not observed, such that spinal nerve development extends through the pygostyle region. Disparities between the neognaths and paleognaths studied were also reflected in the morphology of their pygostyles. The ancestral long-tailed spinal nerve configuration was hypothesized from brown anole and alligator, which unexpectedly more resembles the neognathous birds. This study shows that tail anatomy is not universal in avians, and suggests several possible scenarios regarding bird evolution, including an independent paleognathous long-tailed ancestor. 
    more » « less