skip to main content


Search for: All records

Creators/Authors contains: "Xia, Mengzhou"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Translation to or from low-resource languages (LRLs) poses challenges for machine translation in terms of both adequacy and fluency. Data augmentation utilizing large amounts of monolingual data is regarded as an effective way to alleviate these problems. In this paper, we propose a general framework for data augmentation in low-resource machine translation that not only uses target-side monolingual data, but also pivots through a related highresource language (HRL). Specifically, we experiment with a two-step pivoting method to convert high-resource data to the LRL, making use of available resources to better approximate the true data distribution of the LRL. First, we inject LRL words into HRL sentences through an induced bilingual dictionary. Second, we further edit these modified sentences using a modified unsupervised machine translation framework. Extensive experiments on four low-resource datasets show that under extreme low-resource settings, our data augmentation techniques improve translation quality by up to 1.5 to 8 BLEU points compared to supervised back-translation baselines. 
    more » « less
  2. Cross-lingual transfer, where a high-resource transfer language is used to improve the accuracy of a low-resource task language, is now an invaluable tool for improving performance of natural language processing (NLP) on lowresource languages. However, given a particular task language, it is not clear which language to transfer from, and the standard strategy is to select languages based on ad hoc criteria, usually the intuition of the experimenter. Since a large number of features contribute to the success of cross-lingual transfer (including phylogenetic similarity, typological properties, lexical overlap, or size of available data), even the most enlightened experimenter rarely considers all these factors for the particular task at hand. In this paper, we consider this task of automatically selecting optimal transfer languages as a ranking problem, and build models that consider the aforementioned features to perform this prediction. In experiments on representative NLP tasks, we demonstrate that our model predicts good transfer languages much better than ad hoc baselines considering single features in isolation, and glean insights on what features are most informative for each different NLP tasks, which may inform future ad hoc selection even without use of our method. 
    more » « less