skip to main content


Search for: All records

Creators/Authors contains: "Xiang, Ziji"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In the recently discovered kagome metal CsV3Sb5, an intriguing proposal invoking a doped Chern insulator state suggests the presence of small Chern Fermi pockets hosting spontaneous orbital-currents and large orbital magnetic moments. While the net thermodynamic magnetization is nearly insensitive to these moments, due to their antiferromagnetic alignment, their presence can be revealed by the Zeeman effect, which shifts electron energies in magnetic fields with a proportionality given by the effectiveg−factor. Here, we determine theg-factor using the spin-zero effect in magnetic quantum oscillations. A largeg-factor enhancement is visible only in magnetic breakdown orbits between conventional and concentrated Berry curvature Fermi pockets that host large orbital moments. Such Berry-curvature-generated large orbital moments are almost always concealed by other effects. In this system, however, magnetic breakdown orbits due to the proximity to a conventional Fermi-surface section allow them to be visibly manifested in magnetic quantum oscillations. Our results provide a remarkable example of the interplay between electronic correlations and more conventional electronic bands in quantum materials.

     
    more » « less
  2. Abstract

    Spin-orbit coupling is an important ingredient to regulate the many-body physics, especially for many spin liquid candidate materials such as rare-earth magnets and Kitaev materials. The rare-earth chalcogenides Equation missing<#comment/>(Ch = O, S, Se) is a congenital frustrating system to exhibit the intrinsic landmark of spin liquid by eliminating both the site disorders between Equation missing<#comment/>and Equation missing<#comment/>ions with the big ionic size difference and the Dzyaloshinskii-Moriya interaction with the perfect triangular lattice of the Equation missing<#comment/>ions. The temperature versus magnetic-field phase diagram is established by the magnetization, specific heat, and neutron-scattering measurements. Notably, the neutron diffraction spectra and the magnetization curve might provide microscopic evidence for a series of spin configuration for in-plane fields, which include the disordered spin liquid state, 120° antiferromagnet, and one-half magnetization state. Furthermore, the ground state is suggested to be a gapless spin liquid from inelastic neutron scattering, and the magnetic field adjusts the spin orbit coupling. Therefore, the strong spin-orbit coupling in the frustrated quantum magnet substantially enriches low-energy spin physics. This rare-earth family could offer a good platform for exploring the quantum spin liquid ground state and quantum magnetic transitions.

     
    more » « less
  3. null (Ed.)