skip to main content

Search for: All records

Creators/Authors contains: "Xiao, Di"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A Chern insulator is a two-dimensional material that hosts chiral edge states produced by the combination of topology with time reversal symmetry breaking. Such edge states are perfect one-dimensional conductors, which may exist not only on sample edges, but on any boundary between two materials with distinct topological invariants (or Chern numbers). Engineering of such interfaces is highly desirable due to emerging opportunities of using topological edge states for energy-efficient information transmission. Here, we report a chiral edge-current divider based on Chern insulator junctions formed within the layered topological magnet MnBi 2 Te 4 . We find that in a device containing a boundary between regions of different thickness, topological domains with different Chern numbers can coexist. At the domain boundary, a Chern insulator junction forms, where we identify a chiral edge mode along the junction interface. We use this to construct topological circuits in which the chiral edge current can be split, rerouted, or switched off by controlling the Chern numbers of the individual domains. Our results demonstrate MnBi 2 Te 4 as an emerging platform for topological circuits design.
    Free, publicly-accessible full text available December 1, 2023
  2. Abstract The interplay between a multitude of electronic, spin, and lattice degrees of freedom underlies the complex phase diagrams of quantum materials. Layer stacking in van der Waals (vdW) heterostructures is responsible for exotic electronic and magnetic properties, which inspires stacking control of two-dimensional magnetism. Beyond the interplay between stacking order and interlayer magnetism, we discover a spin-shear coupling mechanism in which a subtle shear of the atomic layers can have a profound effect on the intralayer magnetic order in a family of vdW antiferromagnets. Using time-resolved X-ray diffraction and optical linear dichroism measurements, interlayer shear is identified as the primary structural degree of freedom that couples with magnetic order. The recovery times of both shear and magnetic order upon optical excitation diverge at the magnetic ordering temperature with the same critical exponent. The time-dependent Ginzburg-Landau theory shows that this concurrent critical slowing down arises from a linear coupling of the interlayer shear to the magnetic order, which is dictated by the broken mirror symmetry intrinsic to the monoclinic stacking. Our results highlight the importance of interlayer shear in ultrafast control of magnetic order via spin-mechanical coupling.
    Free, publicly-accessible full text available December 1, 2023
  3. Free, publicly-accessible full text available September 14, 2023
  4. Free, publicly-accessible full text available February 1, 2023
  5. Free, publicly-accessible full text available April 21, 2023
  6. Moiré superlattices of twisted nonmagnetic two-dimensional (2D) materials are highly controllable platforms for the engineering of exotic correlated and topological states. Here, we report emerging magnetic textures in small-angle twisted 2D magnet chromium triiodide (CrI 3 ). Using single-spin quantum magnetometry, we directly visualized nanoscale magnetic domains and periodic patterns, a signature of moiré magnetism, and measured domain size and magnetization. In twisted bilayer CrI 3 , we observed the coexistence of antiferromagnetic (AFM) and ferromagnetic (FM) domains with disorder-like spatial patterns. In twisted double-trilayer CrI 3 , AFM and FM domains with periodic patterns appear, which is in good agreement with the calculated spatial magnetic structures that arise from the local stacking-dependent interlayer exchange interactions in CrI 3 moiré superlattices. Our results highlight magnetic moiré superlattices as a platform for exploring nanomagnetism.