Abstract Ferro-rotational magnet RbFe(SO4)2has attracted attention for its stable ferro-rotational phase and electric-field-controlled magnetic chirality. This work presents the multiferroic properties andH–Tphase diagram of RbFe(SO4)2, which have been underexplored. Our measurements of magnetic susceptibility, ferroelectric polarization, and dielectric constant under various magnetic fields reveal four distinct phases: (I) a ferroelectric and helical magnetic phase below 4 K and 6 T, (II) a paraelectric and collinear magnetic phase below 4 K and above 6 T, (III) a paraelectric and non-collinear magnetic phase below 4 K and above 9 T, and (IV) a paraelectric and paramagnetic above 4 K. This study clarifies the multiferroic behavior andH–Tphase diagram of RbFe(SO4)2, providing valuable insights into ferro-rotational magnets. 
                        more » 
                        « less   
                    This content will become publicly available on March 1, 2026
                            
                            Strain‐Driven Stabilization of a Room‐Temperature Chiral Multiferroic with Coupled Ferroaxial and Ferroelectric Order
                        
                    
    
            Abstract Noncollinear ferroic materials are sought after as testbeds to explore the intimate connections between topology and symmetry, which result in electronic, optical, and magnetic functionalities not observed in collinear ferroic materials. For example, ferroaxial materials have rotational structural distortions that break mirror symmetry and induce chirality. When ferroaxial order is coupled with ferroelectricity arising from a broken inversion symmetry, it offers the prospect of electric‐field‐control of the ferroaxial distortions and opens up new tunable functionalities. However, chiral multiferroics, especially ones stable at room temperature, are rare. A strain‐stabilized, room‐temperature chiral multiferroic phase in single crystals of BaTiS3is reported here. Using first‐principles calculations, the stabilization of this multiferroic phase havingP63space group for biaxial tensile strains exceeding 1.5% applied on the basalab‐plane of the room temperatureP63cmphase of BaTiS3is predicted. The chiral multiferroic phase is characterized by rotational distortions of TiS6octahedra around the longc‐axis and polar displacement of Ti atoms along thec‐axis. The ferroaxial and ferroelectric distortions and their domains inP63‐BaTiS3are directly resolved using atomic resolution scanning transmission electron microscopy. Landau‐based phenomenological modeling predicts a strong coupling between the ferroelectric and the ferroaxial order makingP63‐BaTiS3an attractive test bed for achieving electric‐field‐control of chirality. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10582401
- Publisher / Repository:
- arXiv
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 35
- Issue:
- 10
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Multiferroic hexagonal rare-earth ferrites (h-RFeO3, R= Sc, Y, and rare earth), in which the improper ferroelectricity and canted antiferromagnetism coexist, have been advocated as promising candidates to pursue the room-temperature multiferroics, because of strong spin-spin interaction. The strong interactions between the ferroic orders and the structural distortions are appealing for high-density, energy-efficient electronic devices. Over the past decade, remarkable advances in atomic-scale synthesis, characterization, and material modeling enable the significant progresses in the understanding and manipulation of ferroic orders and their couplings in h-RFeO3thin films. These results reveal a physical picture of rich ferroelectric and magnetic phenomena interconnected by a set of structural distortions and spin-lattice couplings, which provides guidance for the control of ferroic orders down to the nano scale and the discovery of novel physical phenomena. This review focus on state-of-the-art studies in complex phenomena related to the ferroelectricity and magnetism as well as the magnetoelectric couplings in multiferroic h-RFeO3, based on mostly the recent experimental efforts, aiming to stimulate fresh ideas in this field.more » « less
- 
            Spin and valley degrees of freedom in materials without inversion symmetry promise previously unknown device functionalities, such as spin-valleytronics. Control of material symmetry with electric fields (ferroelectricity), while breaking additional symmetries, including mirror symmetry, could yield phenomena where chirality, spin, valley, and crystal potential are strongly coupled. Here we report the synthesis of a halide perovskite semiconductor that is simultaneously photoferroelectricity switchable and chiral. Spectroscopic and structural analysis, and first-principles calculations, determine the material to be a previously unknown low-dimensional hybrid perovskite (R)-(−)-1-cyclohexylethylammonium/(S)-(+)-1 cyclohexylethylammonium) PbI 3 . Optical and electrical measurements characterize its semiconducting, ferroelectric, switchable pyroelectricity and switchable photoferroelectric properties. Temperature dependent structural, dielectric and transport measurements reveal a ferroelectric-paraelectric phase transition. Circular dichroism spectroscopy confirms its chirality. The development of a material with such a combination of these properties will facilitate the exploration of phenomena such as electric field and chiral enantiomer–dependent Rashba-Dresselhaus splitting and circular photogalvanic effects.more » « less
- 
            Abstract Ferro‐rotational (FR) materials, renowned for their distinctive material functionalities, present challenges in the growth of homo‐FR crystals (i.e., single FR domain). This study explores a cost‐effective approach to growing homo‐FR helimagnetic RbFe(SO4)2(RFSO) crystals by lowering the crystal growth temperature below theTFRthreshold using the high‐pressure hydrothermal method. Through polarized neutron diffraction experiments, it is observed that nearly 86% of RFSO crystals consist of a homo‐FR domain. Notably, RFSO displays remarkable stability in the FR phase, with an exceptionally highTFRof ≈573 K. Furthermore, RFSO exhibits a chiral helical magnetic structure with switchable ferroelectric polarization below 4 K. Importantly, external electric fields can induce a single magnetic domain state and manipulate its magnetic chirality. The findings suggest that the search for new FR magnets with outstanding material properties should consider magnetic sulfates as promising candidates.more » « less
- 
            Multiferroic materials are an interesting functional material family combining two ferroic orderings, e.g. , ferroelectric and ferromagnetic orderings, or ferroelectric and antiferromagnetic orderings, and find various device applications, such as spintronics, multiferroic tunnel junctions, etc. Coupling multiferroic materials with plasmonic nanostructures offers great potential for optical-based switching in these devices. Here, we report a novel nanocomposite system consisting of layered Bi 1.25 AlMnO 3.25 (BAMO) as a multiferroic matrix and well dispersed plasmonic Au nanoparticles (NPs) and demonstrate that the Au nanoparticle morphology and the nanocomposite properties can be effectively tuned. Specifically, the Au particle size can be tuned from 6.82 nm to 31.59 nm and the 6.82 nm one presents the optimum ferroelectric and ferromagnetic properties and plasmonic properties. Besides the room temperature multiferroic properties, the BAMO-Au nanocomposite system presents other unique functionalities including localized surface plasmon resonance (LSPR), hyperbolicity in the visible region, and magneto-optical coupling, which can all be effectively tailored through morphology tuning. This study demonstrates the feasibility of coupling single phase multiferroic oxides with plasmonic metals for complex nanocomposite designs towards optically switchable spintronics and other memory devices.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
