- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Xiaodi Wu (2)
-
Andreas Hu ̈lsing (1)
-
Benjamin Gr ́egoire (1)
-
Boyang Chen (1)
-
Christian Doczkal (1)
-
Gilles Barthe (1)
-
Jelle Don (1)
-
Manuel Barbosa (1)
-
Serge Fehr (1)
-
Shouvanik Chakrabarti (1)
-
Xuchen You (1)
-
Yi Lee (1)
-
Yu-Hsuan Huang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A quantum neural network (QNN) is a parameterized mapping efficiently implementable on near- term Noisy Intermediate-Scale Quantum (NISQ) computers. It can be used for supervised learn- ing when combined with classical gradient-based optimizers. Despite the existing empirical and theoretical investigations, the convergence of QNN training is not fully understood. Inspired by the success of the neural tangent kernels (NTKs) in probing into the dynamics of classical neural net- works, a recent line of works proposes to study over-parameterized QNNs by examining a quantum version of tangent kernels. In this work, we study the dynamics of QNNs and show that contrary to popular belief it is qualitatively different from that of any kernel regression: due to the unitarity of quantum operations, there is a non- negligible deviation from the tangent kernel regression derived at the random initialization. As a result of the deviation, we prove the at-most sub- linear convergence for QNNs with Pauli measurements, which is beyond the explanatory power of any kernel regression dynamics. We then present the actual dynamics of QNNs in the limit of over- parameterization. The new dynamics capture the change of convergence rate during training, and implies that the range of measurements is crucial to the fast QNN convergence.more » « less
-
Manuel Barbosa; Gilles Barthe; Christian Doczkal; Jelle Don; Serge Fehr; Benjamin Gr ́egoire; Yu-Hsuan Huang; Andreas Hu ̈lsing; Yi Lee; Xiaodi Wu (, 43rd International Cryptology Conference (CRYPTO 2023))We extend and consolidate the security justification for the Dilithium signature scheme. In particular, we identify a subtle but crucial gap that appears in several ROM and QROM security proofs for signature schemes that are based on the Fiat-Shamir with aborts paradigm, including Dilithium. The gap lies in the CMA-to-NMA reduction and was uncovered when trying to formalize a variant of the QROM security proof by Kiltz, Lyubashevsky, and Schaffner (Eurocrypt 2018). The gap was confirmed by the authors, and there seems to be no simple patch for it. We provide new, fixed proofs for the affected CMA-to-NMA reduction, both for the ROM and the QROM, and we perform a concrete security analysis for the case of Dilithium to show that the claimed security level is still valid after addressing the gap. Furthermore, we offer a fully mechanized ROM proof for the CMA-security of Dilithium in the Easy- Crypt proof assistant. Our formalization includes several new tools and techniques of independent interest for future formal verification results.more » « less