Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
mRNA therapeutics offer a potentially universal strategy for the efficient development and delivery of therapeutic proteins. Current mRNA vaccines include chemically modified nucleotides to reduce cellular immunogenicity. Here, we develop an efficient, high-throughput method to measure human translation initiation on therapeutically modified as well as endogenous RNAs. Using systems-level biochemistry, we quantify ribosome recruitment to tens of thousands of human 5′ untranslated regions (UTRs) including alternative isoforms and identify sequences that mediate 200-fold effects. We observe widespread effects of coding sequences on translation initiation and identify small regulatory elements of 3–6 nucleotides that are sufficient to potently affect translational output. Incorporation of N1-methylpseudouridine (m1Ψ) selectively enhances translation by specific 5′ UTRs that we demonstrate surpass those of current mRNA vaccines. Our approach is broadly applicable to dissecting mechanisms of human translation initiation and engineering more potent therapeutic mRNAs.more » « lessFree, publicly-accessible full text available December 19, 2025
-
Skolnick, Jeffrey (Ed.)Systematically discovering protein-ligand interactions across the entire human and pathogen genomes is critical in chemical genomics, protein function prediction, drug discovery, and many other areas. However, more than 90% of gene families remain “dark”—i.e., their small-molecule ligands are undiscovered due to experimental limitations or human/historical biases. Existing computational approaches typically fail when the dark protein differs from those with known ligands. To address this challenge, we have developed a deep learning framework, called PortalCG, which consists of four novel components: (i) a 3-dimensional ligand binding site enhanced sequence pre-training strategy to encode the evolutionary links between ligand-binding sites across gene families; (ii) an end-to-end pretraining-fine-tuning strategy to reduce the impact of inaccuracy of predicted structures on function predictions by recognizing the sequence-structure-function paradigm; (iii) a new out-of-cluster meta-learning algorithm that extracts and accumulates information learned from predicting ligands of distinct gene families (meta-data) and applies the meta-data to a dark gene family; and (iv) a stress model selection step, using different gene families in the test data from those in the training and development data sets to facilitate model deployment in a real-world scenario. In extensive and rigorous benchmark experiments, PortalCG considerably outperformed state-of-the-art techniques of machine learning and protein-ligand docking when applied to dark gene families, and demonstrated its generalization power for target identifications and compound screenings under out-of-distribution (OOD) scenarios. Furthermore, in an external validation for the multi-target compound screening, the performance of PortalCG surpassed the rational design from medicinal chemists. Our results also suggest that a differentiable sequence-structure-function deep learning framework, where protein structural information serves as an intermediate layer, could be superior to conventional methodology where predicted protein structures were used for the compound screening. We applied PortalCG to two case studies to exemplify its potential in drug discovery: designing selective dual-antagonists of dopamine receptors for the treatment of opioid use disorder (OUD), and illuminating the understudied human genome for target diseases that do not yet have effective and safe therapeutics. Our results suggested that PortalCG is a viable solution to the OOD problem in exploring understudied regions of protein functional space.more » « less
-
Abstract Microbial communities often perform important functions that depend on inter-species interactions. To improve community function via artificial selection, one can repeatedly grow many communities to allow mutations to arise, and “reproduce” the highest-functioning communities by partitioning each into multiple offspring communities for the next cycle. Since improvement is often unimpressive in experiments, we study how to design effective selection strategies in silico. Specifically, we simulate community selection to improve a function that requires two species. With a “community function landscape”, we visualize how community function depends on species and genotype compositions. Due to ecological interactions that promote species coexistence, the evolutionary trajectory of communities is restricted to a path on the landscape. This restriction can generate counter-intuitive evolutionary dynamics, prevent the attainment of maximal function, and importantly, hinder selection by trapping communities in locations of low community function heritability. We devise experimentally-implementable manipulations to shift the path to higher heritability, which speeds up community function improvement even when landscapes are high dimensional or unknown. Video walkthroughs:https://go.nature.com/3GWwS6j;https://online.kitp.ucsb.edu/online/ecoevo21/shou2/.more » « less
An official website of the United States government
