Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Algorithmic fairness is becoming increasingly important in data mining and machine learning. Among others, a foundational notation is group fairness. The vast majority of the existing works on group fairness, with a few exceptions, primarily focus on debiasing with respect to a single sensitive attribute, despite the fact that the co-existence of multiple sensitive attributes (e.g., gender, race, marital status, etc.) in the real-world is commonplace. As such, methods that can ensure a fair learning outcome with respect to all sensitive attributes of concern simultaneously need to be developed. In this paper, we study the problem of information-theoretic intersectional fairness (InfoFair), where statistical parity, a representative group fairness measure, is guaranteed among demographic groups formed by multiple sensitive attributes of interest. We formulate it as a mutual information minimization problem and propose a generic end-to-end algorithmic framework to solve it. The key idea is to leverage a variational representation of mutual information, which considers the variational distribution between learning outcomes and sensitive attributes, as well as the density ratio between the variational and the original distributions. Our proposed framework is generalizable to many different settings, including other statistical notions of fairness, and could handle any type of learning task equipped with a gradientbased optimizer. Empirical evaluations in the fair classification task on three real-world datasets demonstrate that our proposed framework can effectively debias the classification results with minimal impact to the classification accuracy.more » « less
-
null (Ed.)Graph mining is an essential component of recommender systems and search engines. Outputs of graph mining models typically provide a ranked list sorted by each item's relevance or utility. However, recent research has identified issues of algorithmic bias in such models, and new graph mining algorithms have been proposed to correct for bias. As such, algorithm developers need tools that can help them uncover potential biases in their models while also exploring the impacts of correcting for biases when employing fairness-aware algorithms. In this paper, we present FairRankVis, a visual analytics framework designed to enable the exploration of multi-class bias in graph mining algorithms. We support both group and individual fairness levels of comparison. Our framework is designed to enable model developers to compare multi-class fairness between algorithms (for example, comparing PageRank with a debiased PageRank algorithm) to assess the impacts of algorithmic debiasing with respect to group and individual fairness. We demonstrate our framework through two usage scenarios inspecting algorithmic fairness.more » « less
An official website of the United States government
