Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

This paper studies Distributionally robust Fair transit Resource Allocation model (DrFRAM) under Wasserstein ambiguity set to optimize the public transit resource allocation during a pandemic. We show that the proposed DrFRAM is highly nonconvex and nonlinear and is, in general, NPhard. Fortunately, we show that DrFRAM can be reformulated as a mixedinteger linear programming (MILP) by leveraging the equivalent representation of distributionally robust optimization and monotonicity properties, binarizing integer variables, and linearizing nonconvex terms. To improve the proposed MILP formulation, we derive stronger ones and develop valid inequalities by exploiting the model structures. Besides, we develop scenario decomposition methods usingmore »Free, publiclyaccessible full text available December 31, 2023

Free, publiclyaccessible full text available May 2, 2023

In a chance constrained program (CCP), decision makers seek the best decision whose probability of violating the uncertainty constraints is within the prespecified risk level. As a CCP is often nonconvex and is difficult to solve to optimality, much effort has been devoted to developing convex inner approximations for a CCP, among which the conditional valueatrisk (CVaR) has been known to be the best for more than a decade. This paper studies and generalizes the ALSOX, originally proposed by Ahmed, Luedtke, SOng, and Xie in 2017 , for solving a CCP. We first show that the ALSOX resembles a bilevelmore »Free, publiclyaccessible full text available February 1, 2023

Experimental design is a classical statistics problem, and its aim is to estimate an unknown vector from linear measurements where a Gaussian noise is introduced in each measurement. For the combinatorial experimental design problem, the goal is to pick a subset of experiments so as to make the most accurate estimate of the unknown parameters. In this paper, we will study one of the most robust measures of error estimation—the Doptimality criterion, which corresponds to minimizing the volume of the confidence ellipsoid for the estimation error. The problem gives rise to two natural variants depending on whether repetitions of experimentsmore »

Experimental design is a classical area in statistics and has also found new applications in machine learning. In the combinatorial experimental design problem, the aim is to estimate an unknown mdimensional vector x from linear measurements where a Gaussian noise is introduced in each measurement. The goal is to pick k out of the given n experiments so as to make the most accurate estimate of the unknown parameter x. Given a set S of chosen experiments, the most likelihood estimate x0 can be obtained by a least squares computation. One of the robust measures of error estimation is themore »