Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Intermediate data structures are a common cause of inefficiency in functional programming.Fusionattempts to eliminate intermediate data structures by combining adjacent data traversals into one; existing fusion techniques, however, are based on predefined rewrite rules and hence are limited in expressiveness. In this work we explore a different approach to eliminating intermediate data structures, based on inductive program synthesis. We dub this approachsuperfusion(by analogy withsuperoptimization, which uses inductive synthesis for program optimization). Starting from a reference program annotated with data structures to be eliminated, superfusion first generates asketchwhere program fragments operating on those data structures are replaced with holes; it then fills the holes with constant-time expressions such that the resulting program is equivalent to the reference. The main technical challenge here is scalability because optimized programs are often complex, making the search space intractably large for naive enumeration. To address this challenge, our key insight is to first synthesize aghost functionthat describes the relationship between the original intermediate data structure and its compressed version; this function, although not used in the final program, serves to decompose the joint sketch filling problem into independent simpler problems for each hole. We implement superfusion in a tool called SuFu and evaluate it on a dataset of 290 tasks collected from prior work on deductive fusion and program restructuring. The results show that SuFu solves 264 out of 290 tasks, exceeding the capabilities of rewriting-based fusion systems and achieving comparable performance with specialized approaches to program restructuring on their respective domains.more » « lessFree, publicly-accessible full text available June 20, 2025
-
null (Ed.)API misuses are prevalent and extremely harmful. Despite various techniques have been proposed for API-misuse detection, it is not even clear how different types of API misuses distribute and whether existing techniques have covered all major types of API misuses. Therefore, in this paper, we conduct the first large-scale empirical study on API misuses based on 528,546 historical bug-fixing commits from GitHub (from 2011 to 2018). By leveraging a state-of-the-art fine-grained AST differencing tool, GumTree, we extract more than one million bug-fixing edit operations, 51.7% of which are API misuses. We further systematically classify API misuses into nine different categories according to the edit operations and context. We also extract various frequent API-misuse patterns based on the categories and corresponding operations, which can be complementary to existing API-misuse detection tools. Our study reveals various practical guidelines regarding the importance of different types of API misuses. Furthermore, based on our dataset, we perform a user study to manually analyze the usage constraints of 10 patterns to explore whether the mined patterns can guide the design of future API-misuse detection tools. Specifically, we find that 7,541 potential misuses still exist in latest Apache projects and 149 of them have been reported to developers. To date, 57 have already been confirmed and fixed (with 15 rejected misuses correspondingly). The results indicate the importance of studying historical API misuses and the promising future of employing our mined patterns for detecting unknown API misuses.more » « less
-
Inferring program transformations from concrete program changes has many potential uses, such as applying systematic program edits, refactoring, and automated program repair. Existing work for inferring program transformations usually rely on statistical information over a potentially large set of program-change examples. However, in many practical scenarios we do not have such a large set of program-change examples. In this paper, we address the challenge of inferring a program transformation from one single example. Our core insight is that "big code" can provide effective guide for the generalization of a concrete change into a program transformation, i.e., code elements appearing in many files are general and should not be abstracted away. We first propose a framework for transformation inference, where programs are represented as hypergraphs to enable fine-grained generalization of transformations. We then design a transformation inference approach, GENPAT, that infers a program transformation based on code context and statistics from a big code corpus. We have evaluated GENPAT under two distinct application scenarios, systematic editing and program repair. The evaluation on systematic editing shows that GENPAT significantly outperforms a state-of-the-art approach, SYDIT, with up to 5.5x correctly transformed cases. The evaluation on program repair suggests that GENPAT has the potential to be integrated in advanced program repair tools-GENPAT successfully repaired 19 real-world bugs in the Defects4J benchmark by simply applying transformations inferred from existing patches, where 4 bugs have never been repaired by any existing technique. Overall, the evaluation results suggest that GENPAT is effective for transformation inference and can potentially be adopted for many different applications.more » « less