Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2024
-
Free, publicly-accessible full text available December 1, 2024
-
The study of generative models is a promising branch of deep learning techniques, which has been successfully applied to different scenarios, such as Artificial Intelligence and the Internet of Things. While in most of the existing works, the generative models are realized as a centralized structure, raising the threats of security and privacy and the overburden of communication costs. Rare efforts have been committed to investigating distributed generative models, especially when the training data comes from multiple heterogeneous sources under realistic IoT settings. In this paper, to handle this challenging problem, we design a federated generative model framework that can learn a powerful generator for the hierarchical IoT systems. Particularly, our generative model framework can solve the problem of distributed data generation on multi-source heterogeneous data in two scenarios, i.e., feature related scenario and label related scenario. In addition, in our federated generative models, we develop a synchronous and an asynchronous updating methods to satisfy different application requirements. Extensive experiments on a simulated dataset and multiple real datasets are conducted to evaluate the data generation performance of our proposed generative models through comparison with the state-of-the-arts.
-
Generative Adversarial Networks (GANs) have promoted a variety of applications in computer vision and natural language processing, among others, due to its generative model’s compelling ability to generate realistic examples plausibly drawn from an existing distribution of samples. GAN not only provides impressive performance on data generation-based tasks but also stimulates fertilization for privacy and security oriented research because of its game theoretic optimization strategy. Unfortunately, there are no comprehensive surveys on GAN in privacy and security, which motivates this survey to summarize systematically. The existing works are classified into proper categories based on privacy and security functions, and this survey conducts a comprehensive analysis of their advantages and drawbacks. Considering that GAN in privacy and security is still at a very initial stage and has imposed unique challenges that are yet to be well addressed, this article also sheds light on some potential privacy and security applications with GAN and elaborates on some future research directions.more » « less