This content will become publicly available on December 1, 2024
Exact-Fun: An Exact and Efficient Federated Unlearning Approach
- Award ID(s):
- 2011845
- NSF-PAR ID:
- 10525207
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-0788-7
- Page Range / eLocation ID:
- 1439 to 1444
- Format(s):
- Medium: X
- Location:
- Shanghai, China
- Sponsoring Org:
- National Science Foundation
More Like this
-
To meet the growing need for extended or exact precision solvers, an efficient framework based on Integer-Preserving Gaussian Elimination (IPGE) has been recently developed, which includes dense/sparse LU/Cholesky factorizations and dense LU/Cholesky factorization updates for column and/or row replacement. This paper discusses our ongoing work developing the sparse LU/Cholesky column/row-replacement update and the sparse rank-l update/downdate. We first present some basic background for the exact factorization framework based on IPGE. Then we give our proposed algorithms along with some implementation and data-structure details. Finally, we provide some experimental results showcasing the performance of our update algorithms. Specifically, we show that updating these exact factorizations can typically be 10x to 100x faster than (re-)factorizing the matrices from scratch.more » « less
-
Recursive calls over recursive data are useful for generating probability distributions, and probabilistic programming allows computations over these distributions to be expressed in a modular and intuitive way. Exact inference is also useful, but unfortunately, existing probabilistic programming languages do not perform exact inference on recursive calls over recursive data, forcing programmers to code many applications manually. We introduce a probabilistic language in which a wide variety of recursion can be expressed naturally, and inference carried out exactly. For instance, probabilistic pushdown automata and their generalizations are easy to express, and polynomial-time parsing algorithms for them are derived automatically. We eliminate recursive data types using program transformations related to defunctionalization and refunctionalization. These transformations are assured correct by a linear type system, and a successful choice of transformations, if there is one, is guaranteed to be found by a greedy algorithm.more » « less
-
We show that ghost waves—a special class of nonuniform waves in biaxial dielectric media—can lead to exact frequency degeneracies in guided modes. These degeneracies offer a new way of controlling mode interactions with a broad range of potential applications, from integrated waveguides to nonlinear optics and optical sensing.
-
‘Ground effect’ refers to the enhanced performance enjoyed by fliers or swimmers operating close to the ground. We derive a number of exact solutions for this phenomenon, thereby elucidating the underlying physical mechanisms involved in ground effect. Unlike previous analytic studies, our solutions are not restricted to particular parameter regimes, such as ‘weak’ or ‘extreme’ ground effect, and do not even require thin aerofoil theory. Moreover, the solutions are valid for a hitherto intractable range of flow phenomena, including point vortices, uniform and straining flows, unsteady motions of the wing, and the Kutta condition. We model the ground effect as the potential flow past a wing inclined above a flat wall. The solution of the model requires two steps: firstly, a coordinate transformation between the physical domain and a concentric annulus; and secondly, the solution of the potential flow problem inside the annulus. We show that both steps can be solved by introducing a new special function which is straightforward to compute. Moreover, the ensuing solutions are simple to express and offer new insight into the mathematical structure of ground effect. In order to identify the missing physics in our potential flow model, we compare our solutions against new experimental data. The experiments show that boundary layer separation on the wing and wall occurs at small angles of attack, and we suggest ways in which our model could be extended to account for these effects.more » « less