Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 31, 2026
-
Free, publicly-accessible full text available December 1, 2026
-
Abstract This study reports a comprehensive environmental scan of the generative AI (GenAI) infrastructure in the national network for clinical and translational science across 36 institutions supported by the CTSA Program led by the National Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health (NIH) at the United States. Key findings indicate a diverse range of institutional strategies, with most organizations in the experimental phase of GenAI deployment. The results underscore the need for a more coordinated approach to GenAI governance, emphasizing collaboration among senior leaders, clinicians, information technology staff, and researchers. Our analysis reveals that 53% of institutions identified data security as a primary concern, followed by lack of clinician trust (50%) and AI bias (44%), which must be addressed to ensure the ethical and effective implementation of GenAI technologies.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Abstract Graphene is a privileged 2D platform for hosting confined light-matter excitations known as surface plasmon polaritons (SPPs), as it possesses low intrinsic losses and a high degree of optical confinement. However, the isotropic nature of graphene limits its ability to guide and focus SPPs, making it less suitable than anisotropic elliptical and hyperbolic materials for polaritonic lensing and canalization. Here, we present graphene/CrSBr as an engineered 2D interface that hosts highly anisotropic SPP propagation across mid-infrared and terahertz energies. Using scanning tunneling microscopy, scattering-type scanning near-field optical microscopy, and first-principles calculations, we demonstrate mutual doping in excess of 1013 cm–2holes/electrons between the interfacial layers of graphene/CrSBr. SPPs in graphene activated by charge transfer interact with charge-induced electronic anisotropy in the interfacial doped CrSBr, leading to preferential SPP propagation along the quasi-1D chains that compose each CrSBr layer. This multifaceted proximity effect both creates SPPs and endows them with anisotropic propagation lengths that differ by an order-of-magnitude between the in-plane crystallographic axes of CrSBr.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Free, publicly-accessible full text available August 1, 2026
-
Free, publicly-accessible full text available July 1, 2026
-
Free, publicly-accessible full text available June 1, 2026
-
Free, publicly-accessible full text available April 30, 2026
-
Free, publicly-accessible full text available February 26, 2026