skip to main content


Search for: All records

Creators/Authors contains: "Xu, Dongkuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While Vision Transformers (ViTs) have shown consistent progress in computer vision, deploying them for real-time decision-making scenarios (< 1 ms) is challenging. Current computing platforms like CPUs, GPUs, or FPGA-based solutions struggle to meet this deterministic low-latency real-time requirement, even with quantized ViT models. Some approaches use pruning or sparsity to reduce model size and latency, but this often results in accuracy loss. To address the aforementioned constraints, in this work, we propose EQ-ViT, an end-to-end acceleration framework with novel algorithm and architecture co-design features to enable real-time ViT acceleration on AMD Versal Adaptive Compute Acceleration Platform (ACAP). The contributions are four-fold. First, we perform in-depth kernel- level performance profiling & analysis and explain the bottlenecks for existing acceleration solutions on GPU, FPGA, and ACAP. Second, on the hardware level, we introduce a new spatial and heterogeneous accelerator architecture, EQ-ViT architec- ture. This architecture leverages the heterogeneous features of ACAP, where both FPGA and artificial intelligence engines (AIEs) coexist on the same system-on-chip (SoC). Third, On the algorithm level, we create a comprehensive quantization-aware training strategy, EQ-ViT algorithm. This strategy concurrently quantizes both weights and activations into 8-bit integers, aiming to improve accuracy rather than compromise it during quanti- zation. Notably, the method also quantizes nonlinear functions for efficient hardware implementation. Fourth, we design EQ- ViT automation framework to implement the EQ-ViT architec- ture for four different ViT applications on the AMD Versal ACAP VCK190 board, achieving accuracy improvement with 2.4%, and average speedups of 315.0x, 3.39x, 3.38x, 14.92x, 59.5x, 13.1x over computing solutions of Intel Xeon 8375C vCPU, Nvidia A10G, A100, Jetson AGX Orin GPUs, and AMD ZCU102, U250 FPGAs. The energy efficiency gains are 62.2x, 15.33x, 12.82x, 13.31x, 13.5x, 21.9x. 
    more » « less
    Free, publicly-accessible full text available October 1, 2025
  2. Despite recent progress in Graph Neural Networks (GNNs), explaining predictions made by GNNs remains a challenging and nascent problem. The leading method mainly considers the local explanations, i.e., important subgraph structure and node features, to interpret why a GNN model makes the prediction for a single instance, e.g. a node or a graph. As a result, the explanation generated is painstakingly customized at the instance level. The unique explanation interpreting each instance independently is not sufficient to provide a global understanding of the learned GNN model, leading to the lack of generalizability and hindering it from being used in the inductive setting. Besides, training the explanation model explaining for each instance is time-consuming for large-scale real-life datasets. In this study, we address these key challenges and propose PGExplainer, a parameterized explainer for GNNs. PGExplainer adopts a deep neural network to parameterize the generation process of explanations, which renders PGExplainer a natural approach to multi-instance explanations. Compared to the existing work, PGExplainer has better generalization ability and can be utilized in an inductive setting without training the model for new instances. Thus, PGExplainer is much more efficient than the leading method with significant speed-up. In addition, the explanation networks can also be utilized as a regularizer to improve the generalization power of existing GNNs when jointly trained with downstream tasks. Experiments on both synthetic and real-life datasets show highly competitive performance with up to 24.7% relative improvement in AUC on explaining graph classification over the leading baseline. 
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  3. Optimizing edge caching is crucial for the advancement of next-generation (nextG) wireless networks, ensuring high-speed and low-latency services for mobile users. Existing data-driven optimization approaches often lack awareness of the distribution of random data variables and focus solely on optimizing cache hit rates, neglecting potential reliability concerns, such as base station overload and unbalanced cache issues. This oversight can result in system crashes and degraded user experience. To bridge this gap, we introduce a novel digital twin-assisted optimization framework, called D-REC, which integrates reinforcement learning (RL) with diverse intervention modules to ensure reliable caching in nextG wireless networks. We first develop a joint vertical and horizontal twinning approach to efficiently create network digital twins, which are then employed by D-REC as RL optimizers and safeguards, providing ample datasets for training and predictive evaluation of our cache replacement policy. By incorporating reliability modules into a constrained Markov decision process, D-REC can adaptively adjust actions, rewards, and states to comply with advantageous constraints, minimizing the risk of network failures. Theoretical analysis demonstrates comparable convergence rates between DREC and vanilla data-driven methods without compromising caching performance. Extensive experiments validate that D-REC outperforms conventional approaches in cache hit rate and load balancing while effectively enforcing predetermined reliability intervention modules. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  4. Cloud masking is both a fundamental and a critical task in the vast majority of Earth observation problems across social sectors, including agriculture, energy, water, etc. The sheer volume of satellite imagery to be processed has fast-climbed to a scale (e.g., >10 PBs/year) that is prohibitive for manual processing. Meanwhile, generating reliable cloud masks and image composite is increasingly challenging due to the continued distribution-shifts in the imagery collected by existing sensors and the ever-growing variety of sensors and platforms. Moreover, labeled samples are scarce and geographically limited compared to the needs in real large-scale applications. In related work, traditional remote sensing methods are often physics-based and rely on special spectral signatures from multi- or hyper-spectral bands, which are often not available in data collected by many -- and especially more recent -- high-resolution platforms. Machine learning and deep learning based methods, on the other hand, often require large volumes of up-to-date training data to be reliable and generalizable over space. We propose an autonomous image composition and masking (Auto-CM) framework to learn to solve the fundamental tasks in a label-free manner, by leveraging different dynamics of events in both geographic domains and time-series. Our experiments show that Auto-CM outperforms existing methods on a wide-range of data with different satellite platforms, geographic regions and bands.

     
    more » « less
  5. null (Ed.)
    We consider the problem of learning predictive models from longitudinal data, consisting of irregularly repeated, sparse observations from a set of individuals over time. Such data often exhibit longitudinal correlation (LC) (correlations among observations for each individual over time), cluster correlation (CC) (correlations among individuals that have similar characteristics), or both. These correlations are often accounted for using mixed effects models that include fixed effects and random effects, where the fixed effects capture the regression parameters that are shared by all individuals, whereas random effects capture those parameters that vary across individuals. However, the current state-of-the-art methods are unable to select the most predictive fixed effects and random effects from a large number of variables, while accounting for complex correlation structure in the data and non-linear interactions among the variables. We propose Longitudinal Multi-Level Factorization Machine (LMLFM), to the best of our knowledge, the first model to address these challenges in learning predictive models from longitudinal data. We establish the convergence properties, and analyze the computational complexity, of LMLFM. We present results of experiments with both simulated and real-world longitudinal data which show that LMLFM outperforms the state-of-the-art methods in terms of predictive accuracy, variable selection ability, and scalability to data with large number of variables. The code and supplemental material is available at https://github.com/junjieliang672/LMLFM. 
    more » « less
  6. We consider the problem of learning predictive models from longitudinal data, consisting of irregularly repeated, sparse observations from a set of individuals over time. Such data of- ten exhibit longitudinal correlation (LC) (correlations among observations for each individual over time), cluster correlation (CC) (correlations among individuals that have similar char- acteristics), or both. These correlations are often accounted for using mixed effects models that include fixed effects and random effects, where the fixed effects capture the regression parameters that are shared by all individuals, whereas random effects capture those parameters that vary across individuals. However, the current state-of-the-art methods are unable to se- lect the most predictive fixed effects and random effects from a large number of variables, while accounting for complex cor- relation structure in the data and non-linear interactions among the variables. We propose Longitudinal Multi-Level Factoriza- tion Machine (LMLFM), to the best of our knowledge, the first model to address these challenges in learning predictive mod- els from longitudinal data. We establish the convergence prop- erties, and analyze the computational complexity, of LMLFM. We present results of experiments with both simulated and real-world longitudinal data which show that LMLFM out- performs the state-of-the-art methods in terms of predictive accuracy, variable selection ability, and scalability to data with large number of variables. The code and supplemental material is available at https://github.com/junjieliang672/LMLFM. 
    more » « less