Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The precise controllability of the Fermi level is a critical aspect of quantum materials. For topological Weyl semimetals, there is a pressing need to fine-tune the Fermi level to the Weyl nodes and unlock exotic electronic and optoelectronic effects associated with the divergent Berry curvature. However, in contrast to two-dimensional materials, where the Fermi level can be controlled through various techniques, the situation for bulk crystals beyond laborious chemical doping poses significant challenges. Here, we report the milli-electron-volt (meV) level ultra-fine-tuning of the Fermi level of bulk topological Weyl semimetal tantalum phosphide using accelerator-based high-energy hydrogen implantation and theory-driven planning. By calculating the desired carrier density and controlling the accelerator profiles, the Fermi level can be experimentally fine-tuned from 5 meV below, to 3.8 meV below, to 3.2 meV above the Weyl nodes. High-resolution transmission electron microscopy reveals the crystalline structure is largely maintained under irradiation, while electrical transport indicates that Weyl nodes are preserved and carrier mobility is also largely retained. Our work demonstrates the viability of this generic approach to tune the Fermi level in semimetal systems and could serve to achieve property fine-tuning for other bulk quantum materials with ultrahigh precision.more » « less
-
Abstract Nonlinear light–matter interaction, as the core of ultrafast optics, bulk photovoltaics, nonlinear optical sensing and imaging, and efficient generation of entangled photons, has been traditionally studied by first-principles theoretical methods with the sum-over-states approach. However, this indirect method often suffers from the divergence at band degeneracy and optical zeros as well as convergence issues and high computation costs when summing over the states. Here, using shift vector and shift current conductivity tensor as an example, we present a gauge-invariant generalized approach for efficient and direct calculations of nonlinear optical responses by representing interband Berry curvature, quantum metric, and shift vector in a generalized Wilson loop. This generalized Wilson loop method avoids the above cumbersome challenges and allows for easy implementation and efficient calculations. More importantly, the Wilson loop representation provides a succinct geometric interpretation of nonlinear optical processes and responses based on quantum geometric tensors and quantum geometric potentials and can be readily applied to studying other excited-state responses.more » « less
-
Abstract Diffusion in alloys is an important class of atomic processes. However, atomistic simulations of diffusion in chemically complex solids are confronted with the timescale problem: the accessible simulation time is usually far shorter than that of experimental interest. In this work, long‐timescale simulation methods are developed using reinforcement learning (RL) that extends simulation capability to match the duration of experimental interest. Two special limits, RL transition kinetics simulator (TKS) and RL low‐energy states sampler (LSS), are implemented and explained in detail, while the meaning of general RL are also discussed. As a testbed, hydrogen diffusivity is computed using RL TKS in pure metals and a medium entropy alloy, CrCoNi, and compared with experiments. The algorithm can produce counter‐intuitive hydrogen‐vacancy cooperative motion. We also demonstrate that RL LSS can accelerate the sampling of low‐energy configurations compared to the Metropolis–Hastings algorithm, using hydrogen migration to copper (111) surface as an example.more » « less
-
Technology advancements in history have often been propelled by material innovations. In recent years, two-dimensional (2D) materials have attracted substantial interest as an ideal platform to construct atomic-level material architectures. In this work, we design a reaction pathway steered in a very different energy landscape, in contrast to typical thermal chemical vapor deposition method in high temperature, to enable room-temperature atomic-layer substitution (RT-ALS). First-principle calculations elucidate how the RT-ALS process is overall exothermic in energy and only has a small reaction barrier, facilitating the reaction to occur at room temperature. As a result, a variety of Janus monolayer transition metal dichalcogenides with vertical dipole could be universally realized. In particular, the RT-ALS strategy can be combined with lithography and flip-transfer to enable programmable in-plane multiheterostructures with different out-of-plane crystal symmetry and electric polarization. Various characterizations have confirmed the fidelity of the precise single atomic layer conversion. Our approach for designing an artificial 2D landscape at selective locations of a single layer of atoms can lead to unique electronic, photonic, and mechanical properties previously not found in nature. This opens a new paradigm for future material design, enabling structures and properties for unexplored territories.more » « less
An official website of the United States government
