Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available February 26, 2026
- 
            Lithium-metal batteries (LMBs) are promising alternatives to state-of-the-art Lithium-ion batteries (LIBs) to achieve higher energy densities. However, the poor cyclability of LMBs resulting from Li metal anode (Li0) irreversibility and concomitant electrolyte decompositions limits their practical applications. In this study, we reported a per-fluorinated salt, lithium tetrakis(perfluoro-tertbutyloxy)borate (abbreviated as Li-TFOB) as an electrolyte additive for Li-metal batteries, which contains 36 F atoms per molecule. This newly designed ionic additive tuned the chemical composition of the solid-electrolyte interphase (SEI) on Li0 by increasing the amount of LiF and Li-B-O inorganic species. DFT calculations and Molecular dynamics (MD) simulations indicated the preferential reduction of the TFOB anions at Li0, which occurs with a lower free energy change than PF6anions. The designed ionic additive enables the 4.6 V Li||LiNi0.6Mn0.2Co0.2O2 (NMC622) cell to achieve an average CE of 99.1 % and a high-capacity retention of >50 % after 500 cycles. This experiment-simulation joint study illustrated an attractive approach to accelerating the design of electrolytes and interphases for LMBs.more » « less
- 
            Self-discharge and chemically induced mechanical effects degrade calendar and cycle life in intercalation-based electrochromic and electrochemical energy storage devices. In rechargeable lithium-ion batteries, self-discharge in cathodes causes voltage and capacity loss over time. The prevailing self-discharge model centers on the diffusion of lithium ions from the electrolyte into the cathode. We demonstrate an alternative pathway, where hydrogenation of layered transition metal oxide cathodes induces self-discharge through hydrogen transfer from carbonate solvents to delithiated oxides. In self-discharged cathodes, we further observe opposing proton and lithium ion concentration gradients, which contribute to chemical and structural heterogeneities within delithiated cathodes, accelerating degradation. Hydrogenation occurring in delithiated cathodes may affect the chemo-mechanical coupling of layered cathodes as well as the calendar life of lithium-ion batteries.more » « less
- 
            Abstract Constructing an artificial solid electrolyte interphase (SEI) on lithium metal electrodes is a promising approach to address the rampant growth of dangerous lithium morphologies (dendritic and dead Li0) and low Coulombic efficiency that plague development of lithium metal batteries, but how Li+transport behavior in the SEI is coupled with mechanical properties remains unknown. We demonstrate here a facile and scalable solution-processed approach to form a Li3N-rich SEI with a phase-pure crystalline structure that minimizes the diffusion energy barrier of Li+across the SEI. Compared with a polycrystalline Li3N SEI obtained from conventional practice, the phase-pure/single crystalline Li3N-rich SEI constitutes an interphase of high mechanical strength and low Li+diffusion barrier. We elucidate the correlation among Li+transference number, diffusion behavior, concentration gradient, and the stability of the lithium metal electrode by integrating phase field simulations with experiments. We demonstrate improved reversibility and charge/discharge cycling behaviors for both symmetric cells and full lithium-metal batteries constructed with this Li3N-rich SEI. These studies may cast new insight into the design and engineering of an ideal artificial SEI for stable and high-performance lithium metal batteries.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
