skip to main content

Search for: All records

Creators/Authors contains: "Xu, Lin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents a systematic approach to designing digital forensics instructional materials to address the severe shortage of active learning materials in the digital forensics community. The materials include real-world scenario-based case studies, hands-on problem-driven labs for each case study, and an integrated forensic investigation environment. In this paper, we first clarify some fundamental concepts related to digital forensics, such as digital forensic artifacts, artifact generators, and evidence. We then re-categorize knowledge units of digital forensics based on the artifact generators for measuring the coverage of learning outcomes and topics. Finally, we utilize a real-world cybercrime scenario to demonstrate how knowledge units, digital forensics topics, concepts, artifacts, and investigation tools can be infused into each lab through active learning. The repository of the instructional materials is publicly available on GitHub. It has gained nearly 600 stars and 22k views within several months. Index Terms
    Free, publicly-accessible full text available July 1, 2023
  2. Abstract

    Soft, worm-like robots show promise in complex and constrained environments due to their robust, yet simple movement patterns. Although many such robots have been developed, they either rely on tethered power supplies and complex designs or cannot move external loads. To address these issues, we here introduce a novel, maggot-inspired, magnetically driven “mag-bot” that utilizes shape memory alloy-induced, thermoresponsive actuation and surface pattern-induced anisotropic friction to achieve locomotion inspired by fly larvae. This simple, untethered design can carry cargo that weighs up to three times its own weight with only a 17% reduction in speed over unloaded conditions thereby demonstrating, for the first time, how soft, untethered robots may be used to carry loads in controlled environments. Given their small scale and low cost, we expect that these mag-bots may be used in remote, confined spaces for small objects handling or as components in more complex designs.

  3. Free, publicly-accessible full text available July 1, 2023
  4. Free, publicly-accessible full text available June 29, 2023