skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Xu, Mengchao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Sea ice acts as both an indicator and an amplifier of climate change. High spatial resolution (HSR) imagery is an important data source in Arctic sea ice research for extracting sea ice physical parameters, and calibrating/validating climate models. HSR images are difficult to process and manage due to their large data volume, heterogeneous data sources, and complex spatiotemporal distributions. In this paper, an Arctic Cyberinfrastructure (ArcCI) module is developed that allows a reliable and efficient on-demand image batch processing on the web. For this module, available associated datasets are collected and presented through an open data portal. The ArcCI module offers an architecture based on cloud computing and big data components for HSR sea ice images, including functionalities of (1) data acquisition through File Transfer Protocol (FTP) transfer, front-end uploading, and physical transfer; (2) data storage based on Hadoop distributed file system and matured operational relational database; (3) distributed image processing including object-based image classification and parameter extraction of sea ice features; (4) 3D visualization of dynamic spatiotemporal distribution of extracted parameters with flexible statistical charts. Arctic researchers can search and find arctic sea ice HSR image and relevant metadata in the open data portal, obtain extracted ice parameters, and conduct visual analytics interactively. Users with large number of images can leverage the service to process their image in high performance manner on cloud, and manage, analyze results in one place. The ArcCI module will assist domain scientists on investigating polar sea ice, and can be easily transferred to other HSR image processing research projects. 
    more » « less
  3. Climate and weather data such as precipitation derived from Global Climate Models (GCMs) and satellite observations are essential for the global and local hydrological assessment. However, most climatic popular precipitation products (with spatial resolutions coarser than 10km) are too coarse for local impact studies and require “downscaling” to obtain higher resolutions. Traditional precipitation downscaling methods such as statistical and dynamic downscaling require an input of additional meteorological variables, and very few are applicable for downscaling hourly precipitation for higher spatial resolution. Based on dynamic dictionary learning, we propose a new downscaling method, PreciPatch, to address this challenge by producing spatially distributed higher resolution precipitation fields with only precipitation input from GCMs at hourly temporal resolution and a large geographical extent. Using aggregated Integrated Multi-satellitE Retrievals for GPM (IMERG) data, an experiment was conducted to evaluate the performance of PreciPatch, in comparison with bicubic interpolation using RainFARM—a stochastic downscaling method, and DeepSD—a Super-Resolution Convolutional Neural Network (SRCNN) based downscaling method. PreciPatch demonstrates better performance than other methods for downscaling short-duration precipitation events (used historical data from 2014 to 2017 as the training set to estimate high-resolution hourly events in 2018). 
    more » « less