skip to main content

Search for: All records

Creators/Authors contains: "Xu, Tao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kafafi, Zakya (Ed.)
    Abstract In hybrid perovskite solar cells (PSCs), the reaction of hydrogens (H) located in the amino group of the organic A-site cations with their neighboring halides plays a central role in degradation. Inspired by the retarded biological activities of cells in heavy water, we replaced the light H atom with its abundant, twice-as-heavy, nonradioactive isotope, deuterium (D) to hamper the motion of H. This D substitution retarded the formation kinetics of the detrimental H halides in Pb-based PSCs, as well as the H bond-mediated oxidation of Sn2+ in Sn–Pb-based narrow-bandgap PSCs, evidenced by accelerated stability studies. A computational study indicated that the zero point energy of D-based formamidinium (FA) is lower than that of pristine FA. In addition, the smaller increase in entropy in D-based FA than in pristine FA accounts for the increased formation free energy of the Sn2+ vacancies, which leads to the retarded oxidation kinetics of Sn2+. In this study, we show that substituting active H with D in organic cations is an effective way to enhance the stability of PSCs without sacrificing photovoltaic (PV) performance. This approach is also adaptable to other stabilizing methods.
    Free, publicly-accessible full text available May 1, 2024
  2. Nam-Gyu Park (Ed.)
    With the rapid development of perovskite solar cells (PSCs), lowering fabrication costs for PSCs has become a prominent challenge for commercialization. At present, gold is commonly used as the back metal electrode in state-of-the-art n-i-p structured PSCs due to its compatible work function, chemical inertness, and high conductivity. However, the high cost of gold and the expensive and time-consuming vacuum-based thin-film coating facilities may impede large-scale industrialization of PSCs. Here, we report a bilayer back electrode configuration consisting of an Ni-doped natural graphite layer with a fusible Bi-In alloy. This back electrode can be deposited in a vacuum-free approach and enables PSCs with a power conversion efficiency of 21.0%. These inexpensive materials and facile ambient fabrication techniques provide an appealing disruptive solution to low-cost PSC industrialization.
    Free, publicly-accessible full text available June 7, 2024
  3. Differentiable Neural Architecture Search (DNAS) has demonstrated great success in designing state-of-the-art, efficient neural networks. However, DARTS-based DNAS's search space is small when compared to other search methods', since all candidate network layers must be explicitly instantiated in memory. To address this bottleneck, we propose a memory and computationally efficient DNAS variant: DMaskingNAS. This algorithm expands the search space by up to 10^14x over conventional DNAS, supporting searches over spatial and channel dimensions that are otherwise prohibitively expensive: input resolution and number of filters. We propose a masking mechanism for feature map reuse, so that memory and computational costs stay nearly constant as the search space expands. Furthermore, we employ effective shape propagation to maximize per-FLOP or per-parameter accuracy. The searched FBNetV2s yield state-of-the-art performance when compared with all previous architectures. With up to 421x less search cost, DMaskingNAS finds models with 0.9% higher accuracy, 15% fewer FLOPs than MobileNetV3-Small; and with similar accuracy but 20% fewer FLOPs than Efficient-B0. Furthermore, our FBNetV2 outperforms MobileNetV3 by 2.6% in accuracy, with equivalent model size. FBNetV2 models are open-sourced at
  4. High-performance optoelectronic devices, such as solar cells and light-emitting diodes, have been fabricated with lead halide perovskites owing to their superior carrier properties. However, charge transport in such optoelectronics is intrinsically directional due to the existence of p–n junctions, which thus lacks the potential to elucidate any perturbations in light or electricity during energy conversion. Here, with the presence of a LiCl additive in a formamidinium chloride (FACl) solution, the as-grown LiCl:FAPbCl 3 nanorods demonstrate greatly enhanced crystallinity and UV photoresponse as compared to pristine FAPbCl 3 nanostructures without the LiCl additive. Most importantly, the LiCl:FAPbCl 3 nanorod film exhibits unprecedented distinguishability to UV photons with different energies and oscillating intensities, in the form of bipolar and periodically oscillatory photocurrents. This work could advance the fundamental understanding of photoinduced carrier processes in halide perovskites and facilitate the development of novel UV-based optical communications.