skip to main content

This content will become publicly available on May 1, 2024

Title: Bioinspired stability enhancement in deuterium-substituted organic–inorganic hybrid perovskite solar cells
Abstract In hybrid perovskite solar cells (PSCs), the reaction of hydrogens (H) located in the amino group of the organic A-site cations with their neighboring halides plays a central role in degradation. Inspired by the retarded biological activities of cells in heavy water, we replaced the light H atom with its abundant, twice-as-heavy, nonradioactive isotope, deuterium (D) to hamper the motion of H. This D substitution retarded the formation kinetics of the detrimental H halides in Pb-based PSCs, as well as the H bond-mediated oxidation of Sn2+ in Sn–Pb-based narrow-bandgap PSCs, evidenced by accelerated stability studies. A computational study indicated that the zero point energy of D-based formamidinium (FA) is lower than that of pristine FA. In addition, the smaller increase in entropy in D-based FA than in pristine FA accounts for the increased formation free energy of the Sn2+ vacancies, which leads to the retarded oxidation kinetics of Sn2+. In this study, we show that substituting active H with D in organic cations is an effective way to enhance the stability of PSCs without sacrificing photovoltaic (PV) performance. This approach is also adaptable to other stabilizing methods.
; ; ; ; ;
Kafafi, Zakya
Award ID(s):
Publication Date:
Journal Name:
PNAS Nexus
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hybrid halide 2D perovskites deserve special attention because they exhibit superior environmental stability compared with their 3D analogs. The closer interlayer distance discovered in 2D Dion–Jacobson (DJ) type of halide perovskites relative to 2D Ruddlesden–Popper (RP) perovskites implies better carrier charge transport and superior performance in solar cells. Here, the structure and properties of 2D DJ perovskites employing 3‐(aminomethyl)piperidinium (3AMP2+) as the spacing cation and a mixture of methylammonium (MA+) and formamidinium (FA+) cations in the perovskite cages are presented. Using single‐crystal X‐ray crystallography, it is found that the mixed‐cation (3AMP)(MA0.75FA0.25)3Pb4I13perovskite has a narrower bandgap, less distorted inorganic framework, and larger PbIPb angles than the single‐cation (3AMP)(MA)3Pb4I13. Furthermore, the (3AMP)(MA0.75FA0.25)3Pb4I13films made by a solvent‐engineering method with a small amount of hydriodic acid have a much better film morphology and crystalline quality and more preferred perpendicular orientation. As a result, the (3AMP)(MA0.75FA0.25)3Pb4I13‐based solar cells exhibit a champion power conversion efficiency of 12.04% with a high fill factor of 81.04% and a 50% average efficiency improvement compared to the pristine (3AMP)(MA)3Pb4I13cells. Most importantly, the 2D DJ 3AMP‐based perovskite films and devices show better air and light stability than the 2D RP butylammonium‐based perovskites and their 3D analogs.

  2. Abstract

    Here, a simple and generally applicable method of fabricating efficient and stable Pb‐Sn binary perovskite solar cells (PVSCs) based on a galvanic displacement reaction (GDR) is demonstrated. Different from the commonly used conventional approaches to form perovskite precursor solutions by mixing metal halides and organic halides such as PbI2, SnI2, MAI, FAI, etc., together, the precursor solutions are formulated by reacting pure Pb‐based perovskite precursor solutions with fine Sn metal powders. After the ratios between Pb and Sn are optimized, high PCEs of 15.85% and 18.21% can be achieved for MAPb0.4Sn0.6I3and (FAPb0.6Sn0.4I3)0.85(MAPb0.6Sn0.4Br3)0.15based PVSCs, which are the highest PCEs among all values reported to date for Pb‐Sn binary PVSCs. Moreover, the GDR perovskite‐based PVSCs exhibit significantly improved ambient and thermal stability with encapsulation, which can retain more than 90% of their initial PCEs after being stored in ambient (relative humidity (RH) ≈50%) for 1000 h or being thermal annealed at 80 °C for more than 120 h in ambient conditions. These results demonstrate the advantage of using GDR to prepare tunable bandgap binary perovskites for devices with greatly improved performance and stability.

  3. Abstract

    Organic‐inorganic hybrid perovskite solar cells are susceptible to multiple influencing factors such as moisture, oxygen, heat stress, ion migration. Given the complex practical working conditions for solar cells, a fundamental question is how different failure mechanisms collaborate and substantially accelerate the device degradation. In this study, it is found that ion migration can accelerate the reaction between oxygen and methylammonium lead iodide perovskite in light conditions. This is suggested since regions with local electric fields suffer from more severe decomposition. Here it is reported that cesium ions (Cs+) incorporated in perovskite lattice, with a moderate doping concentration (e.g. 5%), can function as stabilizers to efficiently interrupt such a synergistic effect between oxygen induced degradation and ion migration while retaining the high performance of perovskite solar cells. Both experimental and theoretical results suggest that 5% Cs+ions incorporation simultaneously suppresses the formation of reactive superoxide ions () as well as ion migration in perovskites by forming additional energy barriers. This A‐site cations engineering is also a promising strategy to circumvent the detrimental effect of oxygen molecules in FA‐based perovskites, which is important for developing high‐efficiency perovskite solar cells with enhanced stability.

  4. In meeting rapidly growing demands for energy and clean water, engineered systems such as unconventional oil and gas recovery and desalination processes produce large amounts of briny water. In the environment, these highly concentrated halides can be oxidized and transformed to reactive halogen radicals, whose roles in the degradation and transformation of organic pollutants have been studied. However, redox reactions between halogen radicals and heavy metal ions are still poorly understood. In this work, we found that aqueous manganese ions (Mn2+) could be oxidized to Mn oxide solids by reactive halogen radicals generated from reactions between halide ions and hydroxyl radicals or between halide ions and triplet state dissolved organic matter. In particular, more Mn2+ was oxidized by Br radicals generated from bromide ion (Br−) than by Cl radicals generated from chloride ion (Cl−), even though the concentrations of Br− in surface waters are much lower than Cl− concentrations. In addition, the highly concentrated halides greatly increased the ionic strength of the solution, affecting Mn2+ oxidation kinetics and the crystallinity and oxidation state of the newly formed Mn oxides. These newly discovered pathways involving Mn2+(aq) and reactive halogen radicals aid in understanding the generation of abiotic Mn oxide solids andmore »forecasting their redox activities. Moreover, this work emphasizes the critical need for a better knowledge of the roles of reactive halogen radicals in inorganic redox reactions.« less
  5. Abstract

    High‐performance tin‐lead perovskite solar cells (PSCs) are needed for all‐perovskite‐tandem solar cells. However, iodide related fast photodegradation severely limits the operational stability of Sn‐Pb perovskites despite the demonstrated high efficiency and thermal stability. Herein, this work employs an alkylammonium pseudo‐halogen additive to enhance the power conversion efficiency (PCE) and photostability of methylammonium (MA)‐free, Sn‐Pb PSCs. Density functional theory (DFT) calculations reveal that the pseudo‐halogen tetrafluoroborate (BF4) has strong binding capacity with metal ions (Sn2+/Pb2+) in the Sn‐Pb perovskite lattice, which lowers iodine vacancy formation. Upon combining BF4with an octylammonium (OA+) cation, the PCE of the device with a built‐in light‐scattering layer is boosted to 23.7%, which represents a new record for Sn‐Pb PSCs. The improved efficiency benefits from the suppressed defect density. Under continuous 1 sun illumination, the OABF4embodied PSCs show slower generation of interstitial iodides and iodine, which greatly improves the device photostability under open‐circuit condition. Moreover, the device based on OABF4retains 88% of the initial PCE for 1000 h under the maximum‐power‐point tracking (MPPT) without cooling.