skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bioinspired stability enhancement in deuterium-substituted organic–inorganic hybrid perovskite solar cells
Abstract In hybrid perovskite solar cells (PSCs), the reaction of hydrogens (H) located in the amino group of the organic A-site cations with their neighboring halides plays a central role in degradation. Inspired by the retarded biological activities of cells in heavy water, we replaced the light H atom with its abundant, twice-as-heavy, nonradioactive isotope, deuterium (D) to hamper the motion of H. This D substitution retarded the formation kinetics of the detrimental H halides in Pb-based PSCs, as well as the H bond-mediated oxidation of Sn2+ in Sn–Pb-based narrow-bandgap PSCs, evidenced by accelerated stability studies. A computational study indicated that the zero point energy of D-based formamidinium (FA) is lower than that of pristine FA. In addition, the smaller increase in entropy in D-based FA than in pristine FA accounts for the increased formation free energy of the Sn2+ vacancies, which leads to the retarded oxidation kinetics of Sn2+. In this study, we show that substituting active H with D in organic cations is an effective way to enhance the stability of PSCs without sacrificing photovoltaic (PV) performance. This approach is also adaptable to other stabilizing methods.  more » « less
Award ID(s):
1806152
PAR ID:
10419516
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Kafafi, Zakya
Date Published:
Journal Name:
PNAS Nexus
Volume:
2
Issue:
5
ISSN:
2752-6542
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Formamidinium (FA)‐based lead iodide perovskites have emerged as the most promising light‐absorber materials in the prevailing perovskite solar cells (PSCs). However, they suffer from the phase‐instability issue in the ambient atmosphere, which is holding back the realization of the full potential of FA‐based PSCs in the context of high efficiency and stability. Herein, the tetraethylorthosilicate hydrolysis process is integrated with the solution crystallization of FA‐based perovskites, forming a new film structure with individual perovskite grains encapsulated by amorphous silica layers that are in situ formed at the nanoscale. The silica not only protects perovskite grains from the degradation but also enhances the charge‐carrier dynamics of perovskite films. The underlying mechanism is discussed using a joint experiment‐theory approach. Through this in situ grain encapsulation method, PSCs show an efficiency close to 20% with an impressive 97% retention after 1000‐h storage under ambient conditions. 
    more » « less
  2. Abstract High‐performance tin‐lead perovskite solar cells (PSCs) are needed for all‐perovskite‐tandem solar cells. However, iodide related fast photodegradation severely limits the operational stability of Sn‐Pb perovskites despite the demonstrated high efficiency and thermal stability. Herein, this work employs an alkylammonium pseudo‐halogen additive to enhance the power conversion efficiency (PCE) and photostability of methylammonium (MA)‐free, Sn‐Pb PSCs. Density functional theory (DFT) calculations reveal that the pseudo‐halogen tetrafluoroborate (BF4) has strong binding capacity with metal ions (Sn2+/Pb2+) in the Sn‐Pb perovskite lattice, which lowers iodine vacancy formation. Upon combining BF4with an octylammonium (OA+) cation, the PCE of the device with a built‐in light‐scattering layer is boosted to 23.7%, which represents a new record for Sn‐Pb PSCs. The improved efficiency benefits from the suppressed defect density. Under continuous 1 sun illumination, the OABF4embodied PSCs show slower generation of interstitial iodides and iodine, which greatly improves the device photostability under open‐circuit condition. Moreover, the device based on OABF4retains 88% of the initial PCE for 1000 h under the maximum‐power‐point tracking (MPPT) without cooling. 
    more » « less
  3. Abstract Typical lead‐based perovskites solar cells show an onset of photogeneration around 800 nm, leaving plenty of spectral loss in the near‐infrared (NIR). Extending light absorption beyond 800 nm into the NIR should increase photocurrent generation and further improve photovoltaic efficiency of perovskite solar cells (PSCs). Here, a simple and facile approach is reported to incorporate a NIR‐chromophore that is also a Lewis‐base into perovskite absorbers to broaden their photoresponse and increase their photovoltaic efficiency. Compared with pristine PSCs without such an organic chromophore, these solar cells generate photocurrent in the NIR beyond the band edge of the perovskite active layer alone. Given the Lewis‐basic nature of the organic semiconductor, its addition to the photoactive layer also effectively passivates perovskite defects. These films thus exhibit significantly reduced trap densities, enhanced hole and electron mobilities, and suppressed illumination‐induced ion migration. As a consequence, perovskite solar cells with organic chromophore exhibit an enhanced efficiency of 21.6%, and substantively improved operational stability under continuous one‐sun illumination. The results demonstrate the potential generalizability of directly incorporating a multifunctional organic semiconductor that both extends light absorption and passivates surface traps in perovskite active layers to yield highly efficient and stable NIR‐harvesting PSCs. 
    more » « less
  4. Abstract Surface passivation of perovskite solar cells (PSCs) using a low‐cost industrial organic pigment quinacridone (QA) is presented. The procedure involves solution processing a soluble derivative of QA,N,N‐bis(tert‐butyloxycarbonyl)‐quinacridone (TBOC‐QA), followed by thermal annealing to convert TBOC‐QA into insoluble QA. With halide perovskite thin films coated by QA, PSCs based on methylammonium lead iodide (MAPbI3) showed significantly improved performance with remarkable stability. A PCE of 21.1 % was achieved, which is much higher than 18.9 % recorded for the unmodified devices. The QA coating with exceptional insolubility and hydrophobicity also led to greatly enhanced contact angle from 35.6° for the pristine MAPbI3thin films to 77.2° for QA coated MAPbI3thin films. The stability of QA passivated MAPbI3perovskite thin films and PSCs were significantly enhanced, retaining about 90 % of the initial efficiencies after more than 1000 hours storage under ambient conditions. 
    more » « less
  5. In meeting rapidly growing demands for energy and clean water, engineered systems such as unconventional oil and gas recovery and desalination processes produce large amounts of briny water. In the environment, these highly concentrated halides can be oxidized and transformed to reactive halogen radicals, whose roles in the degradation and transformation of organic pollutants have been studied. However, redox reactions between halogen radicals and heavy metal ions are still poorly understood. In this work, we found that aqueous manganese ions (Mn2+) could be oxidized to Mn oxide solids by reactive halogen radicals generated from reactions between halide ions and hydroxyl radicals or between halide ions and triplet state dissolved organic matter. In particular, more Mn2+ was oxidized by Br radicals generated from bromide ion (Br−) than by Cl radicals generated from chloride ion (Cl−), even though the concentrations of Br− in surface waters are much lower than Cl− concentrations. In addition, the highly concentrated halides greatly increased the ionic strength of the solution, affecting Mn2+ oxidation kinetics and the crystallinity and oxidation state of the newly formed Mn oxides. These newly discovered pathways involving Mn2+(aq) and reactive halogen radicals aid in understanding the generation of abiotic Mn oxide solids and forecasting their redox activities. Moreover, this work emphasizes the critical need for a better knowledge of the roles of reactive halogen radicals in inorganic redox reactions. 
    more » « less