skip to main content


Search for: All records

Creators/Authors contains: "Xu, Xiaodong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 13, 2024
  2. Abstract One-dimensional chiral interface channels can be created at the boundary of two quantum anomalous Hall (QAH) insulators with different Chern numbers. Such a QAH junction may function as a chiral edge current distributer at zero magnetic field, but its realization remains challenging. Here, by employing an in-situ mechanical mask, we use molecular beam epitaxy to synthesize QAH insulator junctions, in which two QAH insulators with different Chern numbers are connected along a one-dimensional junction. For the junction between Chern numbers of 1 and −1, we observe quantized transport and demonstrate the appearance of the two parallel propagating chiral interface channels along the magnetic domain wall at zero magnetic field. For the junction between Chern numbers of 1 and 2, our quantized transport shows that a single chiral interface channel appears at the interface. Our work lays the foundation for the development of QAH insulator-based electronic and spintronic devices and topological chiral networks. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Abstract Fe 1+ y Te 1− x Se x is characterized by its complex magnetic phase diagram and highly orbital-dependent band renormalization. Despite this, the behavior of nematicity and nematic fluctuations, especially for high tellurium concentrations, remains largely unknown. Here we present a study of both B 1 g and B 2 g nematic fluctuations in Fe 1+ y Te 1− x Se x (0 ≤ x ≤ 0.53) using the technique of elastoresistivity measurement. We discovered that the nematic fluctuations in two symmetry channels are closely linked to the corresponding spin fluctuations, confirming the intertwined nature of these two degrees of freedom. We also revealed an unusual temperature dependence of the nematic susceptibility, which we attributed to a loss of coherence of the d x y orbital. Our results highlight the importance of orbital differentiation on the nematic properties of iron-based materials. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Free, publicly-accessible full text available August 17, 2024
  5. Free, publicly-accessible full text available June 1, 2024
  6. Free, publicly-accessible full text available September 1, 2024
  7. Abstract

    Exciton polaritons are quasiparticles of photons coupled strongly to bound electron-hole pairs, manifesting as an anti-crossing light dispersion near an exciton resonance. Highly anisotropic semiconductors with opposite-signed permittivities along different crystal axes are predicted to host exotic modes inside the anti-crossing called hyperbolic exciton polaritons (HEPs), which confine light subdiffractionally with enhanced density of states. Here, we show observational evidence of steady-state HEPs in the van der Waals magnet chromium sulfide bromide (CrSBr) using a cryogenic near-infrared near-field microscope. At low temperatures, in the magnetically-ordered state, anisotropic exciton resonances sharpen, driving the permittivity negative along one crystal axis and enabling HEP propagation. We characterize HEP momentum and losses in CrSBr, also demonstrating coupling to excitonic sidebands and enhancement by magnetic order: which boosts exciton spectral weight via wavefunction delocalization. Our findings open new pathways to nanoscale manipulation of excitons and light, including routes to magnetic, nonlocal, and quantum polaritonics.

     
    more » « less