skip to main content


Search for: All records

Creators/Authors contains: "Xu, Zhichao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. State-of-the-art industrial-level recommender system applications mostly adopt complicated model structures such as deep neural networks. While this helps with the model performance, the lack of system explainability caused by these nearly blackbox models also raises concerns and potentially weakens the users’ trust in the system. Existing work on explainable recommendation mostly focuses on designing interpretable model structures to generate model-intrinsic explanations. However, most of them have complex structures, and it is difficult to directly apply these designs onto existing recommendation applications due to the effectiveness and efficiency concerns. However, while there have been some studies on explaining recommendation models without knowing their internal structures (i.e., model-agnostic explanations), these methods have been criticized for not reflecting the actual reasoning process of the recommendation model or, in other words, faithfulness . How to develop model-agnostic explanation methods and evaluate them in terms of faithfulness is mostly unknown. In this work, we propose a reusable evaluation pipeline for model-agnostic explainable recommendation. Our pipeline evaluates the quality of model-agnostic explanation from the perspectives of faithfulness and scrutability. We further propose a model-agnostic explanation framework for recommendation and verify it with the proposed evaluation pipeline. Extensive experiments on public datasets demonstrate that our model-agnostic framework is able to generate explanations that are faithful to the recommendation model. We additionally provide quantitative and qualitative study to show that our explanation framework could enhance the scrutability of blackbox recommendation model. With proper modification, our evaluation pipeline and model-agnostic explanation framework could be easily migrated to existing applications. Through this work, we hope to encourage the community to focus more on faithfulness evaluation of explainable recommender systems. 
    more » « less
    Free, publicly-accessible full text available January 31, 2025
  2. Free, publicly-accessible full text available July 12, 2024
  3. null (Ed.)
  4. null (Ed.)
    User and item reviews are valuable for the construction of recommender systems. In general, existing review-based methods for recommendation can be broadly categorized into two groups: the siamese models that build static user and item representations from their reviews respectively, and the interaction-based models that encode user and item dynamically according to the similarity or relationships of their reviews. Although the interaction-based models have more model capacity and fit human purchasing behavior better, several problematic model designs and assumptions of the existing interaction-based models lead to its suboptimal performance compared to existing siamese models. In this paper, we identify three problems of the existing interaction-based recommendation models and propose a couple of solutions as well as a new interaction-based model to incorporate review data for rating prediction. Our model implements a relevance matching model with regularized training losses to discover user relevant information from long item reviews, and it also adapts a zero attention strategy to dynamically balance the item-dependent and item-independent information extracted from user reviews. Empirical experiments and case studies on Amazon Product Benchmark datasets show that our model can extract effective and interpretable user/item representations from their reviews and outperforms multiple types of state-of-the-art review-based recommendation models. 
    more » « less
  5. null (Ed.)