skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yamashita, Kansuke"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present the analysis of the microlensing event OGLE-2015-BLG-0845, which was affected by both the microlensing parallax and xallarap effects. The former was detected via the simultaneous observations from the ground and Spitzer, and the latter was caused by the orbital motion of the source star in a relatively close binary. The combination of these two effects led to a mass measurement of the lens object, revealing a low-mass ($$0.14 \pm 0.05 \, \mathrm{ M}_{\odot }$$) M dwarf at the bulge distance ($$7.6 \pm 1.0$$ kpc). The source binary consists of a late F-type subgiant and a K-type dwarf of $$\sim 1.2$$ and $$\sim 0.9 \mathrm{ M}_{\odot }$$, respectively, and the orbital period is $$70 \pm 10$$ d. OGLE-2015-BLG-0845 is the first single-lens event in which the lens mass is measured via the binarity of the source. Given the abundance of binary systems as potential microlensing sources, the xallarap effect may not be a rare phenomenon. Our work thus highlights the application of the xallarap effect in the mass determination of microlenses, and the same method can be used to identify isolated dark lenses. 
    more » « less
    Free, publicly-accessible full text available August 21, 2025
  2. Aims.We analyze the anomalies appearing in the light curves of the three microlensing events MOA-2022-BLG-563, KMT-2023-BLG-0469, and KMT-2023-BLG-0735. The anomalies exhibit common short-term dip features that appear near the peak. Methods.From the detailed analyses of the light curves, we find that the anomalies were produced by planets accompanied by the lenses of the events. For all three events, the estimated mass ratios between the planet and host are on the order of 10−4:q ~8 × 10−4for MOA-2022-BLG-563L,q~ 2.5 × 10−4for KMT-2023-BLG-0469L, andq~ 1.9 × 10−4for KMT-2023-BLG-0735L. The interpretations of the anomalies are subject to a common inner-outer degeneracy, which causes ambiguity when estimating the projected planet-host separation. Results.We estimated the planet mass,Mp, host mass,Mh, and distance,DL, to the planetary system by conducting Bayesian analyses using the observables of the events. The estimated physical parameters of the planetary systems are (Mh/M,Mp/MJ,DL/kpc) = (0.48−0.30+0.36, 0.40−0.25+0.31, 6.53−1.57+1.12) for MOA-2022-BLG-563L, (0.47−0.26+0.35, 0.124−0.067+0.092, 7.07−1.19+1.03) for KMT-2023-BLG-0469L, and (0.62−0.35+0.34, 0.125−0.070+0.068, 6.26−1.67+1.27) for KMT-2023-BLG-0735L. According to the estimated parameters, all planets are cold planets with projected separations that are greater than the snow lines of the planetary systems, they have masses that lie between the masses of Uranus and Jupiter of the Solar System, and the hosts of the planets are main-sequence stars that are less massive than the Sun. In all cases, the planetary systems are more likely to be in the bulge with probabilitiesPbulge= 64%, 73%, and 56% for MOA-2022-BLG-563, KMT-2023-BLG-0469, and KMT-2023-BLG-0735, respectively. 
    more » « less
  3. Aims.We investigated the nature of the anomalies appearing in four microlensing events KMT-2020-BLG-0757, KMT-2022-BLG-0732, KMT-2022-BLG-1787, and KMT-2022-BLG-1852. The light curves of these events commonly exhibit initial bumps followed by subsequent troughs that extend across a substantial portion of the light curves. Methods.We performed thorough modeling of the anomalies to elucidate their characteristics. Despite their prolonged durations, which differ from the usual brief anomalies observed in typical planetary events, our analysis revealed that each anomaly in these events originated from a planetary companion located within the Einstein ring of the primary star. It was found that the initial bump arouse when the source star crossed one of the planetary caustics, while the subsequent trough feature occurred as the source traversed the region of minor image perturbations lying between the pair of planetary caustics. Results.The estimated masses of the host and planet, their mass ratios, and the distance to the discovered planetary systems are (Mhost/M,Mplanet/MJ,q/10−3,DL/kpc) = (0.58−0.30+0.33, 10.71−5.61+6.17, 17.61 ± 2.25, 6.67−1.30+0.93) for KMT-2020-BLG-0757, (0.53−0.31+0.31, 1.12−0.65+0.65, 2.01 ± 0.07, 6.66−1.84+1.19) for KMT-2022-BLG-0732, (0.42−0.23+0.32, 6.64−3.64+4.98, 15.07 ± 0.86, 7.55−1.30+0.89) for KMT-2022-BLG-1787, and (0.32−0.19+0.34, 4.98−2.94+5.42, 8.74 ± 0.49, 6.27−1.15+0.90) for KMT-2022-BLG-1852. These parameters indicate that all the planets are giants with masses exceeding the mass of Jupiter in our solar system and the hosts are low-mass stars with masses substantially less massive than the Sun. 
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  4. Aims.We aim to investigate the nature of the short-term anomaly that appears in the lensing light curve of KMT-2023-BLG-1866. The anomaly was only partly covered due to its short duration of less than a day, coupled with cloudy weather conditions and a restricted nighttime duration. Methods.Considering the intricacy of interpreting partially covered signals, we thoroughly explored all potential degenerate solutions. Through this process, we identified three planetary scenarios that account for the observed anomaly equally well. These scenarios are characterized by the specific planetary parameters: (s, q)inner= [0.9740 ± 0.0083, (2.46 ± 1.07) × 10−5], (s, q)intermediate= [0.9779 ± 0.0017, (1.56 ± 0.25) × 10−5], and (s, q)outer= [0.9894 ± 0.0107, (2.31 ± 1.29) × 10−5], wheresandqdenote the projected separation (scaled to the Einstein radius) and mass ratio between the planet and its host, respectively. We identify that the ambiguity between the inner and outer solutions stems from the inner-outer degeneracy, while the similarity between the intermediate solution and the others is due to an accidental degeneracy caused by incomplete anomaly coverage. Results.Through Bayesian analysis utilizing the constraints derived from measured lensing observables and blending flux, our estimation indicates that the lens system comprises a very-low-mass planet orbiting an early M-type star situated approximately (6.2–6.5) kpc from Earth in terms of median posterior values for the different solutions. The median mass of the planet host is in the range of (0.48–0.51)M, and that of the planet’s mass spans a range of (2.6–4.0)ME, varying across different solutions. The detection of KMT-2023-BLG-1866Lb signifies the extension of the lensing surveys to very-low-mass planets that have been difficult to detect in earlier surveys. 
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  5. Aims.We undertake a project to reexamine microlensing data gathered from high-cadence surveys. The aim of the project is to reinvestigate lensing events whose light curves exhibit intricate anomaly features that are associated with caustics, but lack prior proposed models that would explain these features. Methods.Through detailed reanalyses considering higher-order effects, we determined that it is vital to account for the orbital motions of lenses to accurately explain the anomaly features observed in the light curves of the lensing events OGLE-2018-BLG-0971, MOA-2023-BLG-065, and OGLE-2023-BLG-0136. Results.We estimated the masses and distances to the lenses by conducting Bayesian analyses using the lensing parameters of the newly found lensing solutions. These analyses showed that the lenses of the events OGLE-2018-BLG-0971 and MOA-2023-BLG-065 are binaries composed of M dwarfs, while the lens of OGLE-2023-BLG-0136 likely is a binary composed of an early K-dwarf primary and a late M-dwarf companion. For all lensing events, the probability that the lens resides in the bulge is considerably higher than that it is located in the disk. 
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  6. Abstract The current studies of microlensing planets are limited by small number statistics. Follow-up observations of high-magnification microlensing events can efficiently form a statistical planetary sample. Since 2020, the Korea Microlensing Telescope Network (KMTNet) and the Las Cumbres Observatory (LCO) global network have been conducting a follow-up program for high-magnification KMTNet events. Here, we report the detection and analysis of a microlensing planetary event, KMT-2023-BLG-1431, for which the subtle (0.05 mag) and short-lived (5 hr) planetary signature was characterized by the follow-up from KMTNet and LCO. A binary-lens single-source (2L1S) analysis reveals a planet/host mass ratio ofq= (0.72 ± 0.07) × 10−4, and the single-lens binary-source (1L2S) model is excluded by Δχ2= 80. A Bayesian analysis using a Galactic model yields estimates of the host star mass of M host = 0.57 0.29 + 0.33 M , the planetary mass of M planet = 13.5 6.8 + 8.1 M , and the lens distance of D L = 6.9 1.7 + 0.8 kpc. The projected planet-host separation of a = 2.3 0.5 + 0.5 au or a = 3.2 0.8 + 0.7 au, subject to the close/wide degeneracy. We also find that without the follow-up data, the survey-only data cannot break the degeneracy of central/resonant caustics and the degeneracy of 2L1S/1L2S models, showing the importance of follow-up observations for current microlensing surveys. 
    more » « less
  7. Aims.As a part of the project aiming to build a homogeneous sample of binary-lens (2L1S) events containing brown dwarf (BD) companions, we investigate the 2021 season microlensing data collected by the Korea Microlensing Telescope Network (KMTNet) survey. Methods.For this purpose, we first identified 2L1S events by conducting systematic analyses of anomalous lensing events. We then selected candidate BD companion events by applying the criterion that the mass ratio of the lens components is lower thanqth ∼ 0.1. Results.From this procedure, we find four events including KMT-2021-BLG-0588, KMT-2021-BLG-1110, KMT-2021-BLG-1643, and KMT-2021-BLG-1770, for which the estimated mass ratios areq ∼ 0.10, 0.07, 0.08, and 0.15, respectively. Event KMT-2021-BLG-1770 was selected as a candidate even though the mass ratio is slightly greater thanqthbecause the lens mass expected from the measured short timescale of the event,tE ∼ 7.6 days, is low. From the Bayesian analyses, we estimate that the primary and companion masses are (M1/M,M2/M) = (0.54−0.24+0.31, 0.053−0.023+0.031) for KMT-2021-BLG-0588L, (0.74−0.35+0.27, 0.055−0.026+0.020) for KMT-2021-BLG-1110L, (0.73−0.17+0.24,0.061−0.014+0.020) for KMT-2021-BLG-1643L, and (0.13−0.07+0.18, 0.020−0.011+0.028) for KMT-2021-BLG-1770L. It is estimated that the probabilities that the lens companions are in the BD mass range are 82%, 85%, 91%, and 59% for the individual events. To confirm the BD nature of the lens companions found in this and previous works by directly imaging the lenses from future high-resolution adaptive-optics (AO) followup observations, we provide the lens-source separations expected in 2030, which is the approximate year of the first AO light on 30 m class telescopes. 
    more » « less
  8. Aims.We investigate the previous microlensing data collected by the KMTNet survey in search of anomalous events for which no precise interpretations of the anomalies had been suggested. From this investigation, we find that the anomaly in the lensing light curve of the event KMT-2021-BLG-1547 is approximately described by a binary-lens (2L1S) model with a lens possessing a giant planet, but the model leaves unexplained residuals. Methods.We investigated the origin of the residuals by testing more sophisticated models that include either an extra lens component (3L1S model) or an extra source star (2L2S model) on top of the 2L1S configuration of the lens system. From these analyses, we find that the residuals from the 2L1S model originate from the existence of a faint companion to the source. The 2L2S solution substantially reduces the residuals and improves the model fit by Δχ2= 67.1 with respect to the 2L1S solution. The 3L1S solution also improves the fit, but its fit is worse than that of the 2L2S solution by Δχ2= 24.7. Results.According to the 2L2S solution, the lens of the event is a planetary system with planet and host masses (Mp/MJ,Mh/M) = (1.47−0.77+0.64, 0.72−0.38+0.32) lying at a distanceDL= 5.07−1.50+0.98kpc, and the source is a binary composed of a subgiant primary of a lateGor an earlyKspectral type and a main-sequence companion of aKspectral type. The event demonstrates the need for sophisticated modeling of unexplained anomalies if one wants to construct a complete microlensing planet sample. 
    more » « less
  9. Abstract Following Shin et al. (2023b), which is a part of the “Systematic KMTNet Planetary Anomaly Search” series (i.e., a search for planets in the 2016 KMTNet prime fields), we conduct a systematic search of the 2016 KMTNet subprime fields using a semi-machine-based algorithm to identify hidden anomalous events missed by the conventional by-eye search. We find four new planets and seven planet candidates that were buried in the KMTNet archive. The new planets are OGLE-2016-BLG-1598Lb, OGLE-2016-BLG-1800Lb, MOA-2016-BLG-526Lb, and KMT-2016-BLG-2321Lb, which show typical properties of microlensing planets, i.e., giant planets orbit M-dwarf host stars beyond their snow lines. For the planet candidates, we find planet/binary or 2L1S/1L2S degeneracies, which are an obstacle to firmly claiming planet detections. By combining the results of Shin et al. (2023b) and this work, we find a total of nine hidden planets, which is about half the number of planets discovered by eye in 2016. With this work, we have met the goal of the systematic search series for 2016, which is to build a complete microlensing planet sample. We also show that our systematic searches significantly contribute to completing the planet sample, especially for planet/host mass ratios smaller than 10−3, which were incomplete in previous by-eye searches of the KMTNet archive. 
    more » « less
  10. Aims.We investigate the microlensing data collected in the 2022 season from high-cadence microlensing surveys in order to find weak signals produced by planetary companions to lenses. Methods.From these searches, we find that two lensing events, KMT-2022-BLG-0475 and KMT-2022-BLG-1480, exhibit weak short-term anomalies. From a detailed modeling of the lensing light curves, we determine that the anomalies are produced by planetary companions with a mass ratio to the primary ofq ~1.8 × 10−4for KMT-2022-BLG-0475L andq ~4.3 × 10−4for KMT-2022-BLG-1480L. Results.We estimate that the host and planet masses and the projected planet-host separation are (Mh/M,Mp/MU,a/au) = (0.43−0.23+0.35, 1.73−0.92+1.42, 2.03−0.38+0.25) for KMT-2022-BLG-0475L and (0.18−0.09+0.16, 1.82−0.92+1.60, 1.22−0.14+0.15) for KMT-2022-BLG-1480L, whereMUdenotes the mass of Uranus. The two planetary systems have some characteristics in common: the primaries of the lenses are early-mid M dwarfs that lie in the Galactic bulge, and the companions are ice giants that lie beyond the snow lines of the planetary systems. 
    more » « less