skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on August 21, 2025

Title: OGLE-2015-BLG-0845L: a low-mass M dwarf from the microlensing parallax and xallarap effects
We present the analysis of the microlensing event OGLE-2015-BLG-0845, which was affected by both the microlensing parallax and xallarap effects. The former was detected via the simultaneous observations from the ground and Spitzer, and the latter was caused by the orbital motion of the source star in a relatively close binary. The combination of these two effects led to a mass measurement of the lens object, revealing a low-mass ($0.14 \pm 0.05 \, \mathrm{ M}_{\odot }$) M dwarf at the bulge distance ($7.6 \pm 1.0$ kpc). The source binary consists of a late F-type subgiant and a K-type dwarf of $\sim 1.2$ and $\sim 0.9 \mathrm{ M}_{\odot }$, respectively, and the orbital period is $70 \pm 10$ d. OGLE-2015-BLG-0845 is the first single-lens event in which the lens mass is measured via the binarity of the source. Given the abundance of binary systems as potential microlensing sources, the xallarap effect may not be a rare phenomenon. Our work thus highlights the application of the xallarap effect in the mass determination of microlenses, and the same method can be used to identify isolated dark lenses.  more » « less
Award ID(s):
2108414
NSF-PAR ID:
10541550
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
OUP
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
533
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
1991 to 2004
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present an analysis of microlensing event OGLE-2019-BLG-0825. This event was identified as a planetary candidate by preliminary modeling. We find that significant residuals from the best-fit static binary-lens model exist and a xallarap effect can fit the residuals very well and significantly improvesχ2values. On the other hand, by including the xallarap effect in our models, we find that binary-lens parameters such as mass ratio,q, and separation,s, cannot be constrained well. However, we also find that the parameters for the source system such as the orbital period and semimajor axis are consistent between all the models we analyzed. We therefore constrain the properties of the source system better than the properties of the lens system. The source system comprises a G-type main-sequence star orbited by a brown dwarf with a period ofP∼ 5 days. This analysis is the first to demonstrate that the xallarap effect does affect binary-lens parameters in planetary events. It would not be common for the presence or absence of the xallarap effect to affect lens parameters in events with long orbital periods of the source system or events with transits to caustics, but in other cases, such as this event, the xallarap effect can affect binary-lens parameters.

     
    more » « less
  2. Aims. We conducted a systematic investigation of the microlensing data collected during the previous observation seasons for the purpose of re-analyzing anomalous lensing events with no suggested plausible models. Methods. We found that two anomalous lensing events, OGLE-2018-BLG-0584 and KMT-2018-BLG-2119, cannot be explained with the usual models based on either a binary-lens single-source (2L1S) or a single-lens binary-source (1L2S) interpretation. We tested the feasibility of explaining the light curves of the events with more sophisticated models by adding either an extra lens (3L1S model) or a source (2L2S model) component to the 2L1S lens system configuration. Results. We find that a 2L2S interpretation explains the light curves of both events well and that for each event there are a pair of solutions resulting from the close and wide degeneracy. For the event OGLE-2018-BLG-0584, the source is a binary composed of two K-type stars and the lens is a binary composed of two M dwarfs. For KMT-2018-BLG-2119, the source is a binary composed of two dwarfs of G and K spectral types and the lens is a binary composed of a low-mass M dwarf and a brown dwarf. 
    more » « less
  3. ABSTRACT We report the discovery and analysis of a candidate triple-lens single-source (3L1S) microlensing event, OGLE-2019-BLG-1470. This event was first classified as a normal binary-lens single-source (2L1S) event, but a careful 2L1S modelling showed that it needs an additional lens or source to fit the observed data. It is found that the 3L1S model provides the best fit, but the binary-lens binary-source (2L2S) model is only disfavoured by Δχ2 ≃ 18. All of the feasible models include a planet with planet-to-host mass-ratios 10−3 ≲ q ≲ 10−2. A Bayesian analysis based on a Galactic model indicates that the planet is super-Jovian, and the projected host-planet separation is about 3 au. Specifically, for the best-fitting 3L1S model, the two stars have masses of $M_1=0.57^{+0.43}_{-0.32}{\rm M}_{\odot}$, and $M_2=0.18^{+0.15}_{-0.10}\mathrm{M}_{\odot}$ with projected separation of $1.3^{+0.5}_{-0.5}$ au, and the planetary mass is $M_3=2.2^{+1.8}_{-1.3}M_{\rm {Jupiter}}$. For the 2L2S model, the masses of the host star and the planet are $0.55^{+0.44}_{-0.31}\mathrm{M}_{\odot }$ and $4.6^{+3.7}_{-2.6}M_{\rm {Jupiter}}$, respectively. By investigating the properties of all known microlensing planets in binary systems, we find that all planets in binary systems published by the KMTNet survey are located inside the resonant caustics range with q ≳ 2 × 10−3, indicating the incompleteness of the KMTNet sample for planets in binary systems. Thus, planets in binary systems cannot be included in the current study of the KMTNet mass-ratio function, and a systematic search for planetary anomalies in KMTNet microlensing light curves of binary systems is needed. 
    more » « less
  4. Context. Brown dwarfs are transition objects between stars and planets that are still poorly understood, for which several competing mechanisms have been proposed to describe their formation. Mass measurements are generally difficult to carry out for isolated objects as well as for brown dwarfs orbiting low-mass stars, which are often too faint for a spectroscopic follow-up. Aims. Microlensing provides an alternative tool for the discovery and investigation of such faint systems. Here, we present an analysis of the microlensing event OGLE-2019-BLG-0033/MOA-2019-BLG-035, which is caused by a binary system composed of a brown dwarf orbiting a red dwarf. Methods. Thanks to extensive ground observations and the availability of space observations from Spitzer, it has been possible to obtain accurate estimates of all microlensing parameters, including the parallax, source radius, and orbital motion of the binary lens. Results. Following an accurate modeling process, we found that the lens is composed of a red dwarf with a mass of M 1 = 0.149 ± 0.010 M ⊙ and a brown dwarf with a mass of M 2 = 0.0463 ± 0.0031 M ⊙ at a projected separation of a ⊥ = 0.585 au. The system has a peculiar velocity that is typical of old metal-poor populations in the thick disk. A percent-level precision in the mass measurement of brown dwarfs has been achieved only in a few microlensing events up to now, but will likely become more common in the future thanks to the Roman space telescope. 
    more » « less
  5. Aims. The high-magnification microlensing event KMT-2021-BLG-1077 exhibits a subtle and complex anomaly pattern in the region around the peak. We analyze the lensing light curve of the event with the aim of revealing the nature of the anomaly. Methods. We test various models in combination with several interpretations: that the lens is a binary (2L1S), the source is a binary (1L2S), both the lens and source are binaries (2L2S), or the lens is a triple system (3L1S). We search for the best-fit models under the individual interpretations of the lens and source systems. Results. We find that the anomaly cannot be explained by the usual three-body (2L1S and 1L2S) models. The 2L2S model improves the fit compared to the three-body models, but it still leaves noticeable residuals. On the other hand, the 3L1S interpretation yields a model explaining all the major anomalous features in the lensing light curve. According to the 3L1S interpretation, the estimated mass ratios of the lens companions to the primary are ~1.56 × 10 −3 and ~1.75 × 10 −3 , which correspond to ~1.6 and ~1.8 times the Jupiter/Sun mass ratio, respectively, and therefore the lens is a multiplanetary system containing two giant planets. With the constraints of the event time-scale and angular Einstein radius, it is found that the host of the lens system is a low-mass star of mid-to-late M spectral type with amass of M h = 0.14 −0.07 +0.19 M Θ , and it hosts two gas giant planets with masses of M p1 = 0.22 −0.12 +0.31 M J and M p2 = 0.25 −0.13 +0.35 . The planets lie beyond the snow line of the host with projected separations of a ⊥,p1 = 1.26 −1.08 +1.41 AU and a ⊥,p2 = 0.93 −0.80 +1.05 AU. The planetary system resides in the Galactic bulge at a distance of D L = 8.24 −1.16 +1.02 kpc. The lens of the event is the fifth confirmed multiplanetary system detected by microlensing following OGLE-2006-BLG-109L, OGLE-2012-BLG-0026L, OGLE-2018-BLG-1011L, and OGLE-2019-BLG-0468L. 
    more » « less