skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yan, Cynthia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> We study further the duality between semiclassical AdS3and formal CFT2ensembles. First, we study torus wormholes (Maldacena-Maoz wormholes with two torus boundaries) with one insertion or two insertions on each boundary and find that they give non-decaying contribution to the product of two torus one-point or two-point functions at late-time. Second, we study the ℤ2quotients of a torus wormhole such that the outcome has one boundary. We identify quotients that give non-decaying contributions to the torus two-point function at late-time. We comment on reflection (R) or time-reversal (T) symmetry vs. the combination RT that is a symmetry of any relativistic field theory. RT symmetry itself implies that to the extent that a relativistic quantum field theory exhibits random matrix statistics it should be of the GOE type for bosonic states and of the GSE type for fermionic states. We discuss related implications of these symmetries for wormholes. 
    more » « less
  2. A<sc>bstract</sc> A feature the$$ \mathcal{N} $$ N = 2 supersymmetric Sachdev-Ye-Kitaev (SYK) model shares with extremal black holes is an exponentially large number of ground states that preserve supersymmetry. In fact, the dimension of the ground state subsector is a finite fraction of the total dimension of the SYK Hilbert space. This fraction has a remarkably simple bulk interpretation as the probability that the zero-temperature wormhole — a supersymmetric Einstein-Rosen bridge — has vanishing length. Using chord techniques, we compute the zero-temperature Hartle-Hawking wavefunction; the results reproduce the ground state count obtained from boundary index computations, including non-perturbative corrections. Along the way, we improve the construction [1] of the super-chord Hilbert space and show that the transfer matrix of the empty wormhole enjoys an enhanced$$ \mathcal{N} $$ N = 4 supersymmetry. We also obtain expressions for various two point functions at zero temperature. Finally, we find the expressions for the supercharges acting on more general wormholes with matter and present the superchord algebra. 
    more » « less