Increases in evapotranspiration (ET) from global warming are decreasing streamflow in headwater basins worldwide. However, these streamflow losses do not occur uniformly due to complex topography. To better understand the heterogeneity of streamflow loss, we use the Budyko shape parameter (ω) as a diagnostic tool. We fit ω to 37-year of hydrologic simulation output in the Upper Colorado River Basin (UCRB), an important headwater basin in the US. We split the UCRB into two categories: peak watersheds with high elevation and steep slopes, and valley watersheds with lower elevation and gradual slopes. Our results demonstrate a relationship between streamflow loss and ω. The valley watersheds with greater streamflow loss have ω higher than 3.1, while the peak watersheds with less streamflow loss have an average ω of 1.3. This work highlights the use of ω as an indicator of streamflow loss and could be generalized to other headwater basin systems.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
-
Free, publicly-accessible full text available November 1, 2024
-
Abstract Integrated hydrological modeling is an effective method for understanding interactions between parts of the hydrologic cycle, quantifying water resources, and furthering knowledge of hydrologic processes. However, these models are dependent on robust and accurate datasets that physically represent spatial characteristics as model inputs. This study evaluates multiple data‐driven approaches for estimating hydraulic conductivity and subsurface properties at the continental‐scale, constructed from existing subsurface dataset components. Each subsurface configuration represents upper (unconfined) hydrogeology, lower (confined) hydrogeology, and the presence of a vertical flow barrier. Configurations are tested in two large‐scale U.S. watersheds using an integrated model. Model results are compared to observed streamflow and steady state water table depth (WTD). We provide model results for a range of configurations and show that both WTD and surface water partitioning are important indicators of performance. We also show that geology data source, total subsurface depth, anisotropy, and inclusion of a vertical flow barrier are the most important considerations for subsurface configurations. While a range of configurations proved viable, we provide a recommended Selected National Configuration 1 km resolution subsurface dataset for use in distributed large‐and continental‐scale hydrologic modeling.
Free, publicly-accessible full text available October 18, 2024 -
Abstract This study synthesizes two different methods for estimating hydraulic conductivity (K) at large scales. We derive analytical approaches that estimate K and apply them to the contiguous United States. We then compare these analytical approaches to three‐dimensional, national gridded K data products and three transmissivity (T) data products developed from publicly available sources. We evaluate these data products using multiple approaches: comparing their statistics qualitatively and quantitatively and with hydrologic model simulations. Some of these datasets were used as inputs for an integrated hydrologic model of the Upper Colorado River Basin and the comparison of the results with observations was used to further evaluate the K data products. Simulated average daily streamflow was compared to daily flow data from 10 USGS stream gages in the domain, and annually averaged simulated groundwater depths are compared to observations from nearly 2000 monitoring wells. We find streamflow predictions from analytically informed simulations to be similar in relative bias and Spearman's rho to the geologically informed simulations.
R ‐squared values for groundwater depth predictions are close between the best performing analytically and geologically informed simulations at 0.68 and 0.70 respectively, with RMSE values under 10 m. We also show that the analytical approach derived by this study produces estimates of K that are similar in spatial distribution, standard deviation, mean value, and modeling performance to geologically‐informed estimates. The results of this work are used to inform a follow‐on study that tests additional data‐driven approaches in multiple basins within the contiguous United States. -
Abstract Magnetic toroidicity is an uncommon type of magnetic structure in solid-state materials. Here, we experimentally demonstrate that collinear spins in a material with
R -3 lattice symmetry can host a significant magnetic toroidicity, even parallel to the ordered spins. Taking advantage of a single crystal sample of CoTe6O13with anR -3 space group and a Co2+triangular sublattice, temperature-dependent magnetic, thermodynamic, and neutron diffraction results reveal A-type antiferromagnetic order below 19.5 K, with magnetic point group -3′ andk = (0,0,0). Our symmetry analysis suggests that the missing mirror symmetry in the lattice could lead to the local spin canting for a toroidal moment along thec axis. Experimentally, we observe a large off-diagonal magnetoelectric coefficient of 41.2 ps/m that evidences the magnetic toroidicity. In addition, the paramagnetic state exhibits a large effective moment per Co2+, indicating that the magnetic moment in CoTe6O13has a significant orbital contribution. CoTe6O13embodies an excellent opportunity for the study of next-generation functional magnetoelectric materials. -
Free, publicly-accessible full text available October 20, 2024
-
Although leveraged exchange-traded funds (ETFs) are popular products for retail investors, how to hedge them poses a great challenge to financial institutions. We develop an optimal rebalancing (hedging) model for leveraged ETFs in a comprehensive setting, including overnight market closure and market frictions. The model allows for an analytical optimal rebalancing strategy. The result extends the principle of “aiming in front of target” introduced by Gârleanu and Pedersen (2013) from a constant weight between current and future positions to a time-varying weight because the rebalancing performance is monitored only at discrete time points, but the rebalancing takes place continuously. Empirical findings and implications for the weekend effect and the intraday trading volume are also presented.
This paper was accepted by Agostino Capponi, finance.
Funding: M. Dai acknowledges support from the National Natural Science Foundation of China [Grant 12071333], the Hong Kong Polytechnic University [Grant P0039114], and the Singapore Ministry of Education [Grants R-146-000-243/306/311-114 and R-703-000-032-112]. H. M. Soner acknowledges partial support from the National Science Foundation [Grant DMS 2106462]. C. Yang acknowledges support from the Chinese University of Hong Kong [Grant 4055132 and a University Startup Grant].
Supplemental Material: Data and the online supplement are available at https://doi.org/10.1287/mnsc.2022.4407 .
-
Abstract Unprecedented climate change and anthropogenic activities have induced increasing ecohydrological problems, motivating the development of large‐scale hydrologic modeling for solutions. Water age/quality is as important as water quantity for understanding the terrestrial water cycle. However, scientific progress in tracking water parcels at large‐scale with high spatiotemporal resolutions is far behind that in simulating water balance/quantity owing to the lack of powerful modeling tools. EcoSLIM is a particle tracking model working with ParFlow‐CLM that couples integrated surface‐subsurface hydrology with land surface processes. Here, we demonstrate a parallel framework on distributed, multi‐Graphics Processing Unit platforms with Compute Unified Device Architecture‐Aware Message Passing Interface for accelerating EcoSLIM to continental‐scale. In tests from catchment‐, to regional‐, and then to continental‐scale using 25‐million to 1.6‐billion particles, EcoSLIM shows significant speedup and excellent parallel performance. The parallel framework is portable to atmospheric and oceanic particle tracking models, where the parallelization is inadequate, and a standard parallel framework is also absent. The parallelized EcoSLIM is a promising tool to accelerate our understanding of the terrestrial water cycle and the upscaling of subsurface hydrology to Earth System Models.