skip to main content

Search for: All records

Creators/Authors contains: "Yang, Mengmeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    Chiral magnetic domains are topological spin textures in which the Dzyaloshinskii–Moriya interaction assigns a given chirality to the domain walls. Notably, despite rapid progress in chiral magnetic research, one fundamental issue that remains unclear is how the chirality of chiral magnetic domains change as a magnetic field deforms the spin texture. Using spin‐polarized low energy electron microscopy, the evolution of Fe/Ni chiral magnetic stripe domains are investigated in single‐crystalline Fe/Ni/Cu/Co/Cu(001) multilayers in which the interlayer magnetic coupling between the Co and Fe/Ni films serves as an in‐plane magnetic field. Contrary to theoretical works, it is found that the chirality of the Néel walls results in a parallel alignment of the magnetic stripes with the in‐plane magnetic field direction. The transformation of chiral Néel walls into achiral Bloch walls can be precisely controlled by tuning the Cu spacer layer thickness. In addition, the domain wall exhibits a spontaneous asymmetry within the in‐plane magnetic field, leading to an unbalanced chirality between the left‐handed and right‐handed Bloch walls. These new results foster a better understanding of the chiral domain properties within a magnetic field.

    more » « less
  3. The problem of a suspension droplet falling under gravity was examined for polydisperse droplets composed of a mixture of particles with different densities and sizes. The study was conducted using both simulations based on oseenlet particle interactions and laboratory experiments. The hydrodynamic interactions of the particles within the suspension droplet allow a polydisperse collection of particles to fall as a coherent droplet, even for cases where the difference in particle terminal velocity would cause them to separate quickly from each other in the absence of hydrodynamic interactions. However, a gradual segregation phenomenon is observed in which particles with lower terminal velocity preferentially leave the suspension droplet by entering into the droplet tail, whereas particles with higher terminal velocity remain for longer periods of time within the droplet. When computations and experiments are performed for bidisperse mixtures, a point is eventually reached where all of the lighter/smaller particles are ejected into the droplet tail and the droplet continues to fall with only the heavier/larger particles. 
    more » « less