skip to main content

Search for: All records

Creators/Authors contains: "Yang, Yao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 8, 2023
  2. A systematic study explores transition metal nitrides for nonprecious oxygen reduction electrocatalysts in alkaline fuel cells.
    Free, publicly-accessible full text available February 4, 2023
  3. Free, publicly-accessible full text available February 17, 2023
  4. Metal oxide semiconductors have attracted much attention due to their versatility in different applications, ranging from biosensing to green energy-harvesting technologies. Among these metal oxides, oxide-based diluted magnetic semiconductors have also been proposed for fuel cell applications, especially for the oxygen reduction reaction (ORR) and the oxygen evolution reaction. However, the catalytic mechanism has been proposed to follow a two-electron pathway, forming hydrogen peroxide, instead of the four-electron pathway. Herein, we report cobalt-doped zinc oxide (CoxZn1–xO, 0 < x < 0.018) materials prepared using a co-precipitation method suitable for the electrocatalytic production of hydrogen peroxide. The electrocatalytic performance of CoxZn1–xO materials showed up to 60% hydrogen peroxide production with onset potentials near 649 mV, followed by the two-electron ORR mechanism. Ex situ X-ray absorption spectroscopy experiments at the Co K-edge demonstrated the presence of Co(II) ions at tetrahedral sites within the ZnO lattice.
    Free, publicly-accessible full text available June 21, 2023
  5. Alkaline fuel cells enable the use of earth-abundant elements to replace Pt but are hindered by the sluggish kinetics of the hydrogen oxidation reaction (HOR) in alkaline media. Precious metal–free HOR electrocatalysts need to overcome two major challenges: their low intrinsic activity from too strong a hydrogen-binding energy and poor durability due to rapid passivation from metal oxide formation. Here, we designed a Ni-based electrocatalyst with a 2-nm nitrogen-doped carbon shell (Ni@CN x ) that serves as a protection layer and significantly enhances HOR kinetics. A Ni@CN x anode, paired with a Co−Mn spinel cathode, exhibited a record peak power density of over 200 mW/cm 2 in a completely precious metal–free alkaline membrane fuel cell. Ni@CN x exhibited superior durability when compared to a Ni nanoparticle catalyst due to the enhanced oxidation resistance provided by the CN x layer. Density functional theory calculations suggest that graphitic carbon layers on the surface of the Ni nanoparticles lower the H binding energy to Ni, bringing it closer to the previously predicted value for optimal HOR activity, and single Ni atoms anchored to pyridinic or pyrrolic N defects of graphene can serve as the HOR active sites. The strategy described here marks amore »milestone in electrocatalyst design for low-cost hydrogen fuel cells and other energy technologies with completely precious metal–free electrocatalysts.« less
    Free, publicly-accessible full text available March 29, 2023
  6. Abstract We present velocity-resolved Stratospheric Observatory for Infrared Astronomy (SOFIA)/upgrade German REceiver for Astronomy at Terahertz Frequencies observations of [O i ] and [C ii ] lines toward a Class I protostar, L1551 IRS 5, and its outflows. The SOFIA observations detect [O i ] emission toward only the protostar and [C ii ] emission toward the protostar and the redshifted outflow. The [O i ] emission has a width of ∼100 km s −1 only in the blueshifted velocity, suggesting an origin in shocked gas. The [C ii ] lines are narrow, consistent with an origin in a photodissociation region. Differential dust extinction from the envelope due to the inclination of the outflows is the most likely cause of the missing redshifted [O i ] emission. Fitting the [O i ] line profile with two Gaussian components, we find one component at the source velocity with a width of ∼20 km s −1 and another extremely broad component at −30 km s −1 with a width of 87.5 km s −1 , the latter of which has not been seen in L1551 IRS 5. The kinematics of these two components resemble cavity shocks in molecular outflows and spot shocksmore »in jets. Radiative transfer calculations of the [O i ], high- J CO, and H 2 O lines in the cavity shocks indicate that [O i ] dominates the oxygen budget, making up more than 70% of the total gaseous oxygen abundance and suggesting [O]/[H] of ∼1.5 × 10 −4 . Attributing the extremely broad [O i ] component to atomic winds, we estimate an intrinsic mass-loss rate of (1.3 ± 0.8) × 10 −6 M ⊙ yr −1 . The intrinsic mass-loss rates derived from low- J CO, [O i ], and H i are similar, supporting the model of momentum-conserving outflows, where the atomic wind carries most momentum and drives the molecular outflows.« less
    Free, publicly-accessible full text available January 1, 2023
  7. Abstract

    We present Atacama Large Millimeter Array band 6/7 (1.3 mm/0.87 mm) and Very Large Array Ka-band (9 mm) observations toward NGC 2071 IR, an intermediate-mass star-forming region. We characterize the continuum and associated molecular line emission toward the most luminous protostars, i.e., IRS1 and IRS3, on ∼100 au (0.″2) scales. IRS1 is partly resolved in the millimeter and centimeter continuum, which shows a potential disk. IRS3 has a well-resolved disk appearance in the millimeter continuum and is further resolved into a close binary system separated by ∼40 au at 9 mm. Both sources exhibit clear velocity gradients across their disk major axes in multiple spectral lines including C18O, H2CO, SO, SO2, and complex organic molecules like CH3OH,13CH3OH, and CH3OCHO. We use an analytic method to fit the Keplerian rotation of the disks and give constraints on physical parameters with a Markov Chain Monte Carlo routine. The IRS3 binary system is estimated to have a total mass of 1.4–1.5M. IRS1 has a central mass of 3–5Mbased on both kinematic modeling and its spectral energy distribution, assuming that it is dominated by a single protostar. For both IRS1 and IRS3, the inferred ejection directions from different tracers, including radio jet, watermore »maser, molecular outflow, and H2emission, are not always consistent, and for IRS1 these can be misaligned by ∼50°. IRS3 is better explained by a single precessing jet. A similar mechanism may be present in IRS1 as well but an unresolved multiple system in IRS1 is also possible.

    « less
  8. Recent research has recognized interpretability and robustness as essential properties of trustworthy classification. Curiously, a connection between robustness and interpretability was empirically observed, but the theoretical reasoning behind it remained elusive. In this paper, we rigorously investigate this connection. Specifically, we focus on interpretation using decision trees and robustness to l1-perturbation. Previous works defined the notion of r-separation as a sufficient condition for robustness. We prove upper and lower bounds on the tree size in case the data is r-separated. We then show that a tighter bound on the size is possible when the data is linearly separated. We provide the first algorithm with provable guarantees both on robustness, interpretability, and accuracy in the context of decision trees. Experiments confirm that our algorithm yields classifiers that are both interpretable and robust and have high accuracy.