skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Yingqian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In the United States, thermal power plant electrical generators (EGs) are large water diverters and consumptive users who need water for cooling. Retrofitting existing cooling systems to dry cooling and building new facilities with dry cooling can save water and reduce EG's vulnerability to drought. However, this can be an expensive source of water. We estimate that the cost of water saved by retrofitting cooling in existing EGs ranges from $0.04/m3to $18/m3depending on facility characteristics. Also water savings from building new EGs with dry cooling ranges in cost per unit water from $1.29/m3to $2.24/m3. We compare costs with that for water development projects identified in the Texas State Water Plan. We find the water cost from converting to dry cooling is lower than many of the water development possibilities. We then estimate the impact of climate change on the cost of water saved, finding climate change can increase EG water use by up to 9.3% and lower the costs of water saved. Generally, it appears that water planners might consider cooling alterations as a cost competitive water development alternative whose cost would be further decreased by climate change. 
    more » « less
  2. Abstract Climate change and increasing demands are stressing water allocation. In many places, water reallocation and expensive water development actions are being undertaken with more likely to be stimulated by climate change. Here we examine reallocation and development actions between and within municipal, agricultural, and energy industry users in a water‐scarce region and examine how climate change stimulates further actions. We built a regional agricultural, water and electricity two‐stage stochastic model that simulates optimal strategies in South Central Texas. We find that climate change significantly expands water development, causes agricultural water use reduction and reallocation to municipal interests. 
    more » « less