skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Yujin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The One-hundred-deg2DECam Imaging in Narrowbands (ODIN) survey is carrying out a systematic search for protoclusters during Cosmic Noon, using Lyα-emitting galaxies (LAEs) as tracers. Once completed, ODIN aims to identify hundreds of protoclusters at redshifts of 2.4, 3.1, and 4.5 across seven extragalactic fields, covering a total area of up to 91 deg2. In this work, we report the high clustering strength of the ODIN protoclusters, determined via measurements of their cross-correlation with LAEs. Our sample consists of 150 protocluster candidates atz = 2.4 and 3.1, identified in two ODIN fields with a total area of 13.9 deg2. Atz = 2.4 and 3.1, the inferred protocluster biases are 6 . 6 1.1 + 1.3 and 6 . 1 1.1 + 1.3 , corresponding to mean halo masses of log M / M = 13.5 3 0.24 + 0.21 and 12.9 6 0.33 + 0.28 , respectively. By the present day, these protoclusters are expected to evolve into virialized galaxy clusters with a mean mass of ∼1014.5M. By comparing the observed number density of protoclusters to that of halos with the same measured clustering strength, we find that the completeness of our sample is of order unity. Finally, the similar descendant masses derived for our samples atz= 2.4 and 3.1, assuming that the halo number density remains constant, suggest that they represent similar structures observed at different cosmic epochs. As a consequence, any observed differences between the two samples can be understood as redshift evolution. The ODIN protocluster samples will thus provide valuable insights into the cosmic evolution of cluster galaxies. 
    more » « less
    Free, publicly-accessible full text available March 20, 2026
  2. Abstract Line flux ratios from [O ii] doublets can probe electron densities in the interstellar medium of galaxies. We employ the Southern African Large Telescope’s (SALT) Robert Stobie Spectrograph (RSS), which provides sufficient resolution (R ∼ 3000) to split the [O ii] doublets, to target galaxies from Hobby-Eberly Telescope Dark Energy Experiment and One-hundred-deg2DECam Imaging in Narrowbands with emission line fluxes of at least 2 × 10−16 erg cm−2 s−1. Reduction is carried out using RSSMOSPipeline to reduce SALT-RSS data through wavelength calibration. Despite SALT-RSS being known for its difficulty to flux calibrate, we present spectra that have been flux calibrated using alignment stars with Sloan Digital Sky Survey spectra as standards. We combine multiple spectroscopic settings to obtain full 2D spectra across a wavelength range of 3500–9500 Å. A 1D spectrum can then be extracted to calculate flux ratios and line widths, revealing important physical properties of these bright [O ii]-emitters. 
    more » « less
  3. Abstract To understand the formation and evolution of massive cosmic structures, studying them at high redshift, in the epoch when they formed the majority of their mass, is essential. The One-hundred-deg2DECam Imaging in Narrowbands (ODIN) survey is undertaking the widest-area narrowband program to date, to use Lyα-emitting galaxies (LAEs) to trace the large-scale structure (LSS) of the Universe on the scale of 10–100 cMpc at three cosmic epochs. In this work, we present results atz= 3.1 based on early ODIN data in the COSMOS field. We identify protoclusters and cosmic filaments using multiple methods and discuss their strengths and weaknesses. We then compare our observations against the IllustrisTNG suite of cosmological hydrodynamical simulations. The two are in excellent agreement, identifying a similar number and angular size of structures above a specified density threshold. We successfully recover the simulated protoclusters with log(Mz=0/M) ≳ 14.4 in ∼60% of the cases. With these objects, we show that the descendant masses of our observed protoclusters can be estimated purely based on our 2D measurements, finding a medianz= 0 mass of ∼1014.5M. The lack of information on the radial extent of each protocluster introduces a ∼0.4 dex uncertainty in its descendant mass. Finally, we show that the recovery of the cosmic web in the vicinity of protoclusters is both efficient and accurate. The similarity of our observations and the simulations implies that our structure selection is likewise robust and efficient, demonstrating that LAEs are reliable tracers of the LSS. 
    more » « less
  4. Abstract Lyman-alpha-emitting galaxies (LAEs) are typically young, low-mass, star-forming galaxies with little extinction from interstellar dust. Their low dust attenuation allows their Lyαemission to shine brightly in spectroscopic and photometric observations, providing an observational window into the high-redshift Universe. Narrowband surveys reveal large, uniform samples of LAEs at specific redshifts that probe large-scale structure and the temporal evolution of galaxy properties. The One-hundred-deg2DECam Imaging in Narrowbands (ODIN) utilizes three custom-made narrowband filters on the Dark Energy Camera (DECam) to discover LAEs at three equally spaced periods in cosmological history. In this paper, we introduce the hybrid-weighted double-broadband continuum estimation technique, which yields improved estimation of Lyαequivalent widths. Using this method, we discover 6032, 5691, and 4066 LAE candidates atz= 2.4, 3.1, and 4.5 in the extended COSMOS field (∼9 deg2). We find that [Oii] emitters are a minimal contaminant in our LAE samples, but that interloping Green Pea–like [Oiii] emitters are important for our redshift 4.5 sample. We introduce an innovative method for identifying [Oii] and [Oiii] emitters via a combination of narrowband excess and galaxy colors, enabling their study as separate classes of objects. We present scaled median stacked spectral energy distributions for each galaxy sample, revealing the overall success of our selection methods. We also calculate rest-frame Lyαequivalent widths for our LAE samples and find that the EW distributions are best fit by exponential functions with scale lengths ofw0= 53 ± 1, 65 ± 1, and 59 ± 1 Å, respectively. 
    more » « less
  5. Abstract We test whether Lyα emitters (LAEs) and Lyman-break galaxies (LBGs) can be good tracers of high-zlarge-scale structures, using the Horizon Run 5 cosmological hydrodynamical simulation. We identify LAEs using the Lyαemission line luminosity and its equivalent width, and LBGs using the broadband magnitudes atz∼ 2.4, 3.1, and 4.5. We first compare the spatial distributions of LAEs, LBGs, all galaxies, and dark matter around the filamentary structures defined by dark matter. The comparison shows that both LAEs and LBGs are more concentrated toward the dark matter filaments than dark matter. We also find an empirical fitting formula for the vertical density profile of filaments as a binomial power-law relation of the distance to the filaments. We then compare the spatial distributions of the samples around the filaments defined by themselves. LAEs and LBGs are again more concentrated toward their filaments than dark matter. We also find the overall consistency between filamentary structures defined by LAEs, LBGs, and dark matter, with the median spatial offsets that are smaller than the mean separation of the sample. These results support the idea that the LAEs and LBGs could be good tracers of large-scale structures of dark matter at high redshifts. 
    more » « less
  6. Abstract To understand the mechanism behind high-zLyαnebulae, we simulate the scattering of Lyαin a Hihalo about a central Lyαsource. For the first time, we consider both smooth and clumpy distributions of halo gas, as well as a range of outflow speeds, total Hicolumn densities, Hispatial concentrations, and central source galaxies (e.g., with Lyαline widths corresponding to those typical of active galactic nucleus or star-forming galaxies). We compute the spatial-frequency diffusion and the polarization of the Lyαphotons scattered by atomic hydrogen. Our scattering-only model reproduces the typical size of Lyαnebulae (∼100 kpc) at total column densitiesNH I≥ 1020cm−2and predicts a range of positive, flat, and negative polarization radial gradients. We also find two general classes of Lyαnebula morphologies: with and without bright cores. Cores are seen whenNH Iis low, i.e., when the central source is directly visible, and are associated with a polarization jump, a steep increase in the polarization radial profile just outside the halo center. Of all the parameters tested in our smooth or clumpy medium model,NH Idominates the trends. The radial behaviors of the Lyαsurface brightness, spectral line shape, and polarization in the clumpy model with covering factorfc≳ 5 approach those of the smooth model at the sameNH I. A clumpy medium with highNH Iand lowfc≲ 2 generates Lyαfeatures via scattering that the smooth model cannot: a bright core, symmetric line profile, and polarization jump. 
    more » « less
  7. Abstract The molecular gas in galaxies traces both the fuel for star formation and the processes that can enhance or suppress star formation. Observations of the molecular gas state can thus point to when and why galaxies stop forming stars. In this study, we present Atacama Large Millimeter/submillimeter Array observations of the molecular gas in galaxies evolving through the post-starburst phase. These galaxies have low current star formation rates (SFRs), regardless of the SFR tracer used, with recent starbursts ending within the last 600 Myr. We present CO (3–2) observations for three post-starburst galaxies, and dense gas HCN/HCO+/HNC (1–0) observations for six (four new) post-starburst galaxies. The post-starbursts have low excitation traced by the CO spectral-line energy distribution up to CO (3–2), more similar to early-type than starburst galaxies. The low excitation indicates that lower density rather than high temperatures may suppress star formation during the post-starburst phase. One galaxy displays a blueshifted outflow traced by CO (3–2). MaNGA observations show that the ionized gas velocity is disturbed relative to the stellar velocity field, with a blueshifted component aligned with the molecular gas outflow, suggestive of a multiphase outflow. Low ratios of HCO+/CO, indicating low fractions of dense molecular gas relative to the total molecular gas, are seen throughout post-starburst phase, except for the youngest post-starburst galaxy considered here. These observations indicate that the impact of any feedback or quenching processes may be limited to low excitation and weak outflows in the cold molecular gas during the post-starburst phase. 
    more » « less
  8. Abstract While many Lyαblobs (LABs) are found in and around several well-known protoclusters at high redshift, how they trace the underlying large-scale structure is still poorly understood. In this work, we utilize 5352 Lyαemitters (LAEs) and 129 LABs atz= 3.1 identified over a ∼9.5 deg2area in early data from the ongoing One-hundred-deg2DECam Imaging in Narrowbands (ODIN) survey to investigate this question. Using LAEs as tracers of the underlying matter distribution, we identify overdense structures as galaxy groups, protoclusters, and filaments of the cosmic web. We find that LABs preferentially reside in regions of higher-than-average density and are located in closer proximity to overdense structures, which represent the sites of protoclusters and their substructures. Moreover, protoclusters hosting one or more LABs tend to have a higher descendant mass than those which do not. Blobs are also strongly associated with filaments of the cosmic web, with ∼70% of the population being within a projected distance of ∼2.4 pMpc from a filament. We show that the proximity of LABs to protoclusters is naturally explained by their association with filaments as large cosmic structures are where many filaments converge. The contiguous wide-field coverage of the ODIN survey allows us to establish firmly a connection between LABs as a population and filaments of the cosmic web for the first time. 
    more » « less
  9. null (Ed.)
  10. Abstract We describe the survey design and science goals for One-hundred-deg2DECam Imaging in Narrowbands (ODIN), a NOIRLab survey using the Dark Energy Camera (DECam) to obtain deep (AB ∼ 25.7) narrowband images over an unprecedented area of sky. The three custom-built narrowband filters,N419,N501, andN673, have central wavelengths of 419, 501, and 673 nm and respective FWHM of 7.5, 7.6, and 10.0 nm, corresponding to Lyαatz= 2.4, 3.1, and 4.5 and cosmic times of 2.8, 2.1, and 1.4 Gyr, respectively. When combined with even deeper, public broadband data from the Hyper Suprime-Cam, DECam, and in the future, the Legacy Survey of Space and Time, the ODIN narrowband images will enable the selection of over 100,000 Lyα-emitting (LAE) galaxies at these epochs. ODIN-selected LAEs will identify protoclusters as galaxy overdensities, and the deep narrowband images enable detection of highly extended Lyαblobs (LABs). Primary science goals include measuring the clustering strength and dark matter halo connection of LAEs, LABs, and protoclusters, and their respective relationship to filaments in the cosmic web. The three epochs allow for the redshift evolution of these properties to be determined during the period known as Cosmic Noon, where star formation was at its peak. The narrowband filter wavelengths are designed to enable interloper rejection and further scientific studies by revealing [Oii] and [Oiii] atz= 0.34, Lyαand Heii1640 atz= 3.1, and Lyman continuum plus Lyαatz= 4.5. Ancillary science includes similar studies of the lower-redshift emission-line galaxy samples and investigations of nearby star-forming galaxies resolved into numerous [Oiii] and [Sii] emitting regions. 
    more » « less