Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 4, 2025
-
Free, publicly-accessible full text available August 14, 2025
-
null (Ed.)A loss of individuated finger movement affects critical aspects of daily activities. There is a need to develop neural-machine interface techniques that can continuously decode single finger movements. In this preliminary study, we evaluated a novel decoding method that used finger-specific motoneuron firing frequency to estimate joint kinematics and fingertip forces. High-density electromyogram (EMG) signals were obtained during which index or middle fingers produced either dynamic flexion movements or isometric flexion forces. A source separation method was used to extract motor unit (MU) firing activities from a single trial. A separate validation trial was used to only retain the MUs associated with a particular finger. The finger-specific MU firing activities were then used to estimate individual finger joint angles and isometric forces in a third trial using a regression method. Our results showed that the MU firing based approach led to smaller prediction errors for both joint angles and forces compared with the conventional EMG amplitude based method. The outcomes can help develop intuitive neural-machine interface techniques that allow continuous single-finger level control of robotic hands. In addition, the previously obtained MU separation information was applied directly to new data, and it is therefore possible to enable online extraction of MU firing activities for real-time neural-machine interactions.more » « less